Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wistar scientists decipher structure of NatA, an enzyme complex that modifies most human proteins

05.08.2013
Vital enzyme complex found elevated in many cancers

A team of researchers from Philadelphia and Norway has determined the structure of an enzyme complex that modifies one end of most human proteins and is made at elevated levels in numerous forms of cancer.

A study in Nature Structural & Molecular Biology, led by researchers at The Wistar Institute, depicts the structure and the means of action of a protein complex called NatA. Their findings, they believe, will allow them to create an inhibitor—a potential drug—that could knock out NatA in order to curb the growth of cancer cells.

"NatA appears essential for the growth of cells and their ability to divide, and we can see elevated production of this enzyme in many forms of cancer" said Ronen Marmorstein, Ph.D., senior author, Hilary Koprowski, M.D. Professor, and leader of The Wistar Institute Cancer Center's Gene Expression and Regulation program. "Obviously, this is a particularly appealing drug target and we are currently leveraging our recent understanding of how the protein works to develop small molecules that will bind to and inactivate NatA."

NatA is a member of a family of N-terminal acetyltransferase (NAT) enzymes (or enzyme complexes) that modify proteins in order to control their behavior—for example by turning proteins on, telling proteins where to move, and tagging proteins or the cell for destruction.

According to Marmorstein, NatA works with an amazing specificity for a particular sequence of amino acids—the individual building blocks of proteins—and unraveling the roots of that specificity has proven an alluring puzzle for scientists.

The Marmorstein laboratory has proven expertise in the study of acetylation enzymes, proteins that modify other molecules in the cell with an acetyl group "tag." In the cellular world, structure dictates function, and acetylation is a universal process for controlling protein behavior and gene expression in living organisms.

"Modifying protein structures is one way that our cells control how proteins function," Marmorstein explained, "and enzymes in the NAT family modify nearly 85 percent of human proteins, and 50 percent of these are modified by NatA."

According to Marmorstein, NatA operates in a complex of two proteins, an enzymatic subunit and an auxiliary partner. When they developed the structure of NatA—by bombarding a crystallized sample of the enzyme with powerful X-rays—they found how the auxiliary partner protein is crucial for turning the enzymatic subunit on.

Binding to an auxiliary protein causes a structural change in the enzymatic subunit that properly configures the active site of the protein—the region of the protein where the chemical reaction occurs—essentially acting as a switch that activates the enzyme.

"When it binds to its auxiliary protein, the enzymatic subunit of NatA actually changes shape, reconfiguring the structure to allow it to properly grab its target protein N-terminal sequence for acetylation," Marmorstein said.

Importantly, others have found that NatA function is required for the proliferation of cancer cells. Marmorstein says, understanding the structure of NatA has allowed his team to better understand how to inactivate the protein in cancer cells. The structure has yielded targets for small molecules that will act as inhibitors, essentially stopping the protein by gumming up its structure.

The lead author of this study is Glen Liszczak, Ph.D., a graduate student working at the Wistar Institute from the University of Pennsylvania Department of Chemistry. Other co-authors of this study include, Jacob M. Goldberg, and E. James Petersson, Ph.D., from the University of Pennsylvania's Department of Chemistry; and Hårvard Foyn, Ph.D., and Thomas Arnesen, Ph.D., from the University of Bergen, Norway.

Funding for this project was through the National Institutes of Health grants GM060293 and GM071339. The Arnesen laboratory's efforts were supported by the Research Council of Norway and the Norwegian Cancer Society.

Greg Lester | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>