Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Windows” into the Cell’s Interior - New Method Enables Deeper Insights into the Cell

19.03.2012
Cryo-electron tomography provides high-resolution, three-dimensional insights into the cell.

However, with this method only very small cells or thin peripheral regions of larger cells can be investigated directly. Scientists of the Max Planck Institute of Biochemistry (MPIB) in Martinsried near Munich have now developed a procedure to provide access to cellular regions which were previously nearly inaccessible.


'Shock frozen' cell after treatment with the ion beam. Graphic: Alexander Rigort & Felix Bäuerlein / Copyright: MPI of Biochemistry

Using focused ion beam (FIB) technology, specific cellular material can be cut out, opening up thin “windows” into the cell’s interior. This alternative approach enables the preparation of larger cellular samples devoid of artefacts. The study was recently published in PNAS USA.

With cryo-electron tomography, pioneered by the Department of Molecular Structural Biology headed by Wolfgang Baumeister, researchers can now directly analyze three-dimensional cellular structures. The entire cell or individual cell components are “shock frozen” and enclosed in glass-like ice, thus preserving their spatial structure. The transmission electron microscope then enables the acquisition of two-dimensional projections from different perspectives. Finally, the scientists reconstruct a high-resolution three-dimensional volume from these images. However, the electron beam can penetrate only very thin specimens (for example bacteria cells) up to a thickness of 500 nanometers. Cells of higher organisms are clearly thicker. State-of-the-art electron microscopic preparation techniques are therefore necessary to make also larger objects accessible for cryo-electron tomography.
“The artefact-free and, in particular, targeted preparation of larger cells is a critical step,” explained Alexander Rigort, MPIB scientist. “With the traditional methods, we could never rule out that structures we wanted to investigate were changed.” The meaningfulness of the results was therefore limited, according to the biologist.

Using a focused ion beam microscope (FIB), researchers can now mill single layers of the frozen-hydrated cell and remove them in a controlled manner – thus rendering thin, tailor-made electron-transparent “windows”. An additional advantage of ion thinning is that mechanical sectioning artefacts are completely avoided. This method was originally developed for the material sciences. In structural biology the method shall now provide deeper insights into the molecular organization of the cell’s interior. The thinner the “windows” are, the higher the attainable resolution in the electron microscope. “Now precise insights into the macromolecular architecture of cell regions are possible that were previously nearly inaccessible for cryo-electron microscopy,” said Jürgen Plitzko, scientist at the MPIB.
Original Publication
A. Rigort, F. Bäuerlein, E. Villa, M. Eibauer, T. Laugks, W. Baumeister and J. M. Plitzko: Focused Ion Beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl. Acad. Sci. USA, March 5, 2012
Doi:10.1073/pnas.1201333109.

Contact
Dr. Jürgen M. Plitzko
Molecular Structural Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: plitzko@biochem.mpg.de
http://www.biochem.mpg.de/baumeister

Dr. Alexander Rigort
Molecular Structural Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: rigort@biochem.mpg.de

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Phone: +49 (0) 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/baumeister

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>