Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Widespread connections among neurons help the brain distinguish smells

25.07.2018

Organization -- or lack of it -- in brain's piriform cortex allows us to differentiate one smell from another

Can you tell the smell of a rose from the scent of a lilac? If so, you have your brain's piriform cortex to thank. Compared to many parts of the brain, the piriform cortex--which lets animals and humans process information about smells--looks like a messy jumble of connections between cells called neurons. Now, Salk Institute researchers have illuminated how the randomness of the piriform cortex is actually critical to how the brain distinguishes between similar odors.


Staining one section of the brain, as shown, reveals layers of the piriform cortex--in green, brownish-red, and white--and other cells of the brain in blue.

Credit: Salk Institute

"The standard paradigm is that information in the brain is encoded by which cells are active, but that's not true for the olfactory system," says Charles Stevens, Distinguished Professor Emeritus in Salk's Molecular Neurobiology Laboratory and coauthor of the new work. "In the olfactory system, it turns out it's not a matter of which cells are active, but how many cells are active and how active they are."

Aside from better understanding how smells are processed, the new research, published in the Journal of Comparative Neurology on July 17, 2018, could also lead to greater insight into how some parts of the brain organize information.

... more about:
»brain region »neurons »olfactory »receptor

When odorant molecules--the signature of any given smell--bind to the receptors in a person's nose, the signal is transmitted to the olfactory bulb, and from there to the piriform cortex. In other sensory systems--like the visual system--information maintains a strict order as it moves through the brain. Particular parts of the eye, for instance, always transmit information to specific parts of the visual cortex. But researchers have long known that this order is missing in the piriform cortex.

"We haven't been able to discern any order in the piriform cortex connections in any species," says coauthor Shyam Srinivasan, an assistant project scientist at the University of California San Diego's Kavli Institute for Brain and Mind. "Any given odor lights up about 10 percent of neurons that seem to be scattered all over the piriform cortex."

To start working out the details of how the piriform cortex encodes odor information--and whether its connections are truly random--Stevens and Srinivasan analyzed the piriform cortices of nine mice using a variety of staining and microscopy techniques that let them visualize different cell types in the brain region. Their first goal: to quantify the number and density of cells in the piriform cortex.

"This was really like a survey," explains Srinivasan. "We counted the cells in different representative areas and averaged them across the whole region."

The mouse piriform cortex, they concluded, has around half a million neurons in it, divided equally between the larger, less dense posterior piriform and the smaller, more dense anterior piriform.

Using this initial information on density and neuron number, as well as knowledge from previous studies on the number of neurons in the olfactory bulb and how many neuronal connections--or synapses--connect the olfactory bulb to the piriform cortex, the pair of researchers was able to draw a surprising finding: each neuron in the olfactory bulb is connected to nearly every single neuron in the piriform cortex.

"Every cell in the piriform is getting information from essentially every odor receptor there is," says Stevens. "There's not one 'coffee smell' neuron but a whole bunch of coffee cell neurons all over the place." Rather than a single receptor detecting one odor and lighting up one cluster of telltale neurons, he explains, each odor has a fingerprint that's based more on the strength of the connections--while the smell of coffee may activate nearly the same neurons in the piriform cortex as the smell of chocolate, they'll activate each neuron to a different degree.

"One advantage to this system is that it can encode very complex information," says Srinivasan. "It also makes it very robust to noise." If one neuron sends a "noisy" signal--stronger or weaker activation than it should--the noise gets cancelled out by the many other neurons sending simultaneous, more accurate signals.

The researchers would like to repeat the work in other animals to see where similarities and differences lie. They also are interested in looking into other areas of the brain that have long been assumed to be dominated by seemingly random connections to see if they're organized in the same way.

Stevens and Srinivasan, who also had a paper come out in the Journal of Neuroscience on July 13 about using the fruit fly olfactory learning circuit to improve the current crop of deep learning algorithms, were funded by the Kavli Institute for Brain and Mind at UC San Diego and the National Science Foundation.

###

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Media Contact

Salk Communications
press@salk.edu
858-453-4100

 @salkinstitute

http://www.salk.edu

Salk Communications | EurekAlert!

Further reports about: brain region neurons olfactory receptor

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
05.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
05.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>