Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Zika is not an STD - Semen inhibits Zika virus infection

12.06.2018

While an infected man’s semen may be teeming with hundreds of millions of Zika viruses, the number of people who have been infected with this virus via sexual intercourse is relatively low. Instead, Zika is usually transmitted by a mosquito bite. An international research team headed by Ulm University's Professor Jan Münch has now discovered that semen blocks Zika virus infection. Responsible for this effect are small vesicles that are naturally present in semen and make it harder for the virus to attach to cells of the anogenital tract. The results were published recently in the journal Nature Communications.

The Zika virus, which is particularly prevalent in Central and South America as well as the Pacific islands, can cause severe courses of meningitis and serious developmental disorders in the brains of newborns, such as microcephaly ('small head').


Confocal fluorescence microscopic image of foreskin fibroblasts: Visible are the nuclei in blue, the cytoskeleton in red and Zika proteins (showing sites of viral replication) in green.

Confocal fluorescence microscopic image of foreskin fibroblasts (image: Franziska Krüger)


Prof. Jan Münch (left) with Dr. Janis Müller

picture: Elvira Eberhardt / Uni Ulm

Ulm's virologists and their research partners have investigated the sexual transmission of this virus by testing in the lab how semen affects Zika infection: 'Semen is rich in both inorganic and organic bioactive substances, such as proteins, enzymes, cytokines, hormones and ions,' explains study leader Professor Jan Münch, who conducts research at the Institute of Molecular Virology at the University Medical Centre Ulm.

These substances influence the vaginal milieu and are key influencing factors when it comes to the infectivity of sexually transmitted diseases. In previous studies, the Institute's scientists discovered that amyloid fibrils in semen dramatically enhance the transmission of the AIDS-causing HI virus. On the other hand, some components of semen can also exhibit anti-bacterial properties. Ulm's researchers set out to investigate how semen and its components affect the infectivity of the Zika virus.

'We were very surprised to find that semen inhibits Zika virus infection instead of enhancing its infectivity as it does with HIV-1,' says first author Dr. Janis Müller, who works as postdoctoral scientist at the Institute of Molecular Virology. The international research team demonstrated that Zika virus replicates efficiently in cells isolated from both genital and rectal tissues. When the cells were exposed to semen before infection with Zika, however, infection rates were significantly lower.

What is responsible for this antiviral effect? Using a wide array of methods – from molecular weight filtration and nanoparticle tracking analysis to fluorescence, confocal and electron microscopy – the scientists eventually uncovered the identity of the 'virus stopper'. 'Extracellular vesicles, which are present in semen in large numbers, reduce attachment of the virus to the cells and thus prevent infection,' Münch explains. These vesicles are bubble-like particles consisting of membranes and proteins and are responsible for the transport and storage of substances to cells.

The scientists were further able to demonstrate in experiments that semen also inhibits infections with the Dengue and West Nile viruses, which, like Zika, are primarily transmitted by mosquitoes. 'These findings afford an explanation as to why Zika is rarely transmitted sexually despite the enormous viral load in semen,' states Dr. Münch.

In Zika-endemic areas, however, it is still advisable to protect against sexual transmission of the virus by using condoms during sexual intercourse, since rare cases of sexual transmission of Zika virus have been documented. Moreover, HIV-1 and other microbial pathogens can be transmitted via unprotected sex. This research project, which also involved scientists from Heidelberg, Hamburg and Helsinki as well as Paris and San Francisco, received funding from the German Research Foundation (DFG) and the Baden-Württemberg Foundation.

Further information:
Prof. Dr. Jan Münch, Institute of Molecular Virology, University Medical Centre Ulm,
phone: +49 731 500 65154, email: jan.münch@uni-ulm.de

Andrea Weber-Tuckermann | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>