Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why viruses like Herpes and Zika will need to be reclassified, and its biotech impact


New findings reveal many different structural models, which can eventually lead to developing more targeted antiviral vaccines.

New research reveals that the way viruses were perceived in terms of their architecture will need to be retooled, because they are actually structured in many more patterns than previously understood.

Evolutionary related viruses infecting bacteria and humans adopting one of the newly established protein layouts of icosahedral capsids. Bacillus phage Basilisk (a), herpes simplex virus 1 (b), and bacteriophage lambda (c).

Credit: Antoni Luque, San Diego State University and Reidun Twarock, University of York.

Usage Restrictions: Credit to study co-authors, their institutions and Nature Communications where the images were published, as part of the study.

The findings could have significant impact on how they are classified, our understanding of how they form, evolve and infect hosts, and strategies to identify ways to design vaccines to target them.

In the 1950s and '60s as scientists began to obtain high resolution images of viruses, they discovered the detailed structure of the capsid - an outer protective layer composed of multiple copies of the same protein - which protects the virus' genetic material. The majority of viruses have capsids that are typically quasi-spherical and display icosahedral symmetry - like a 20-sided dice for instance.

... more about:
»Herpes »proteins »vaccines »viral evolution »viruses

The capsid shell is what protects them, and as scientists discovered their structure, they proposed that capsids could have different sizes and hold different amounts of genome, and therefore could infect hosts differently.

Why this matters

When designing drugs to target viruses, scientists can now take their varying structural shapes into account to improve efficacy.

Two researchers who study the structures of viruses, Antoni Luque, a theoretical biophysicist at San Diego State University and a member of its Viral Information Institute, and Reidun Twarock, a mathematical biologist from the University of York, UK, and a member of York's Cross-disciplinary Centre for Systems Analysis, show that many viruses have essentially been misclassified for 60 years, including common viruses such as Herpes simplex and Zika.

This was because despite having the structural images from cryo-electron microscopy, we did not have the mathematical description of many of the architectures of different viruses.

"We discovered six new ways in which proteins can organize to form icosahedral capsid shells," Luque said. "So, many viruses don't adopt only the two broadly understood capsid architectures. There are now at least eight ways in which their icosahedral capsids could be designed."

They used a generalization of the quasiequivalence principle to see how proteins can wrap around an icosahedral capsid.

Their study, which will be published in Nature Communications on Friday, September 27, also shows that viruses that are part of the same structural lineage, based on the protein that they're composed of, adopt consistent icosahedral capsid layouts, providing a new approach to study virus evolution.

Biotech applications

Structural biologists can now take this information and reclassify the structure of the viruses, which will help unveil molecular and evolutionary relationships between different viruses.

It will also provide a guide to engineer new molecular containers for nanotech and biotech applications, and it will help scientists to identify specific strategies to target the assembly of proteins in the capsid. This can eventually lead to a more systematic approach to developing antiviral vaccines.

"We can use this discovery to target both the assembly and stability of the capsid, to either prevent the formation of the virus when it infects the host cell, or break it apart after it's formed," Luque said. "This could facilitate the characterization and identification of antiviral targets for viruses sharing the same icosahedral layout."

This new framework accommodates viruses that were previously outliers, provides new predictions of viral capsid architectures, and has identified common geometrical patterns among distant evolutionary related viruses that infect everyone from humans to bacteria.

Twarock said the new blueprints also provide "a new perspective on viral evolution, suggesting novel routes in which larger and more complex viruses may have evolved from simple ones at evolutionary timescales."

Architectural applications

The geometries could be also used in new architectural designs in buildings and construction.

Since the 1960s, these viral capsids have been classified using the geometrical framework introduced by structural biologist Donald Caspar and biophysicist Aaron Klug, which were inspired by the geodesic domes designed by the renowned architect R. Buckminster Fuller. However, as molecular imaging techniques have advanced, an increasing number of 3D viral capsid reconstructions that included viruses like Herpes or Zika have fallen out from this classical geometrical framework.

"This study introduces a more general framework than the classic Caspar-Klug construction. It is based on the conservation of the local vertices formed by the proteins that interact in the capsid," Luque explained. "This approach led to the discovery of six new types of icosahedral capsid layouts, while recovering the two classical layouts from Caspar-Klug based on Goldberg and geodesic polyhedra."


Collaborations and funding

Co-authors Antoni Luque from San Diego State University and Reidun Twarock from University of York began collaborating on this research in 2017. Luque's lab studies the architecture and ecology of viruses using mathematical and computational models. Using this new framework from this research project, he is currently developing methods to investigate the architecture of viruses in different environments, which could have implications in medicine, ecology, and evolution.

Twarock has been developing geometric models for virus architecture since 2004. Her group is developing mathematical and computational approaches to investigate the consequences of viral geometry for mechanisms in viral life cycles and viral evolution.

Twarock was funded by the EPSRC (Engineering and Physical Sciences Research Council), the Royal Society, and the Wellcome Trust.

This paper is embargoed until 5 a.m EST on Friday, September 27th, 2019 when you can access it at:

Media Contact

Padma Nagappan


Padma Nagappan | EurekAlert!

Further reports about: Herpes proteins vaccines viral evolution viruses

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>