Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why some beetles like alcohol

10.04.2018

Alcohol used as a "weed killer" optimizes the harvest of ambrosia beetles.

If on a warm summer's evening in the beer garden, small beetles dive into your beer, consider giving them a break. Referred to as "ambrosia beetles", these insects just want what’s best for themselves and their offspring. Drawn to the smell of alcohol in the cold liquid, the beetles are always on the lookout for a new environment to farm. And alcohol plays an important role in optimizing the agricultural yield of their crops, as an international team of researchers reports in the current issue of the journal PNAS.


Beetles share the work of cultivating their fungal gardens: some clean the tunnel systems that are being eaten into the wood, others clear the dirt from the nest and clean their fellow workers.

Photo: Gernot Kunz


Fungal garden (electron microscope).

Photo: Peter Biedermann

The black timber bark beetle and its fungal "crop"

Ambrosia beetles, which are a large group of several thousand species worldwide, belong to the bark beetles. All species are characterized by the ability to cultivate fungi. The researchers, including Peter Biedermann, from the Department of Animal Ecology and Tropical Biology at the University of Wuerzburg and the Max Planck Institute for Chemical Ecology in Jena, Christopher Ranger (Ohio State University, USA), as well as Philipp Benz from the Wood Research Institute of the Technical University of Munich (TUM), investigated the role played by alcohol in the farming of fungi as practiced by the black timber bark beetle and its fungal "crop".

"It has long been known that alcohol is produced by weakened trees and that these trees are recognized and colonized by ambrosia beetles," says Biedermann. Baiting traps with alcohol is a classic way to catch these bugs. "And often you will find the roughly two millimeter long beetles in glasses of beer, when a beer garden is surrounded by old trees," adds Biedermann.

Sustainable agriculture as a recipe for success

Thanks to the results of Biedermann, Ranger and Benz, we now know why alcohol is so attractive to these insects. "An increase in the activity of alcohol-degrading enzymes allows the insects' fungi to grow optimally in alcohol-rich wood, while alcohol is toxic to other microorganisms," says Biedermann. More fungi mean more food for the beetles, and more food means more offspring. The beetles and their larvae feed on the fruiting bodies of the fungi, which grow best at an alcohol concentration of about two percent.

"At this level of alcohol, the omnipresent molds, which can also be considered the "weeds" of fungal agriculture, only grow weekly and cannot overgrow the fungal gardens”, says Prof. Benz. Given the beetle’s evolutionary success, the details of its sustainable farming strategy are worth noting. "For more than 60 million years, the animals have successfully and sustainably practiced agriculture, even though their crop – the ambrosia fungus – is a monoculture." Unlike human farmers, the insects seem to have had no problem with weed fungi becoming resistant to the alcohol.

Communal care of fungal gardens

It is not only the agricultural skill of the Ambrosia beetles that inspires Biedermann. "They show social behavior," says the ecologist. Beetles share the work of cultivating their fungal gardens: some clean the tunnel systems that are being eaten into the wood, others clear the dirt from the nest and clean their fellow workers – always with the aim of optimizing the symbiosis of beetle and fungus.

This system is so sophisticated that when they colonize new trees, the animals bring along the fungal spores in their own spore organs. New fungal gardens grow from the "transplanted” spores. The fungi are even able to produce alcohol in order to optimize their environment.

"This way, the fungi cultivated by the ambrosia beetles behave like beer or wine yeasts, generating an alcoholic substrate in which only they can thrive and from which other competing microorganisms are excluded," explains Biedermann.

There is much more to learn from the beetles

Biedermann and Benz are planning to collaboratively study these bark beetles and their fungal symbionts also in the future. One of the many open questions that remains about the lifestyle of these six-legged friends and their fungal "crops” is: what exactly enables them to survive in this boozy environment? "Of course, they have to be more resistant to alcohol than other creatures," says Biedermann. "These characteristics are also of high potential interest from a biotechnological point of view, since they might be transferrable to other systems when better understood”, adds Benz. Maybe humanity has something to learn from the bark beetle after all.

"Symbiont selection via alcohol benefits fungus farming by ambrosia beetles " by Christopher M. Ranger, Peter H. W. Biedermann, Vipaporn Phuntumart, Gayathri U. Beligala, Satyaki Ghosh, Debra E. Palmquist, Robert Mueller, Jenny Barnett, Peter B. Schultz, Michael E. Reding & J. Philipp Benz. Published in PNAS, DOI: www.pnas.org/cgi/doi/10.1073/pnas.1716852115.

Contact:

Dr. Peter Biedermann, Biocenter, Department of Animal Ecology and Tropical Biology (Zoology III).
T .: +49 (0) 931 31-89589, E-Mail: peter.biedermann@uni-wuerzburg.de
More: http://www.insect-fungus.com/

Prof. Dr. J. Philipp Benz, Professorship of Wood Bioprocesses, Holzforschung München, Technical University of Munich. T.: +49 (0)8161 71-4590, E-Mail: benz@hfm.tum.de, working group: http://www.hfm.tum.de/index.php?id=20&L=1

Marco Bosch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>