Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why sea fish don’t mind salty water? Researchers exploring cellular interplay of molecules

26.10.2018

For marine animals, it is crucial that the pressure in their cells – the so-called osmotic pressure – stays on a level which allows them to survive in salty water. Without adjusting pressure, the cells would implode or explode. In recent research, it has been found that two different molecules are responsible for controlling the inner cell pressure. These molecules are called Trimethylamine-N-oxide (TMAO) and urea. However, up to now, it was still unclear why two different molecules are needed. Together with international collaborators, researchers at the Max Planck Institute for Polymer Research solved this puzzle.

TMAO and urea are molecules that affect the osmotic pressure in living cells, so called osmolytes: With high concentrations of both urea and TMAO, marine animals can keep the osmotic pressure comparable to that of seawater. Additionally, TMAO and urea have side effects on proteins, which are also part of the cells. On the one hand, urea destabilizes proteins and leads therefore to cell death. TMAO, on the other hand, stabilizes the structure of proteins, as long as there is no excessive amount of it.


Researchers study the molecular secrets how fish adopt to the harsh environment in seawater

© Y. Nagata / MPI-P

In living cells, it has been found that TMAO and urea co-exist at an approximate molecular ratio of 1:2 (TMAO:urea) and it was anticipated that the two molecules can bind to each other. While every molecule itself interacts with the proteins in a stabilizing or destabilizing manner, the combination of TMAO and urea does not interact with proteins anymore. Therefore, the positive or negative effect of TMAO and urea, respectively, is cancelled by the combination of both molecules.

The scientists at the Max Planck Institute for Polymer Research together with scientists in Japan, China and the U. S. investigated how this cancelation of effects of the two molecules occurs. It is commonly believed that TMAO and urea interact intermolecularly via the hydrogen atom, which is part of the urea molecule, and the oxygen atom of TMAO via so-called hydrogen-bonds. On contrary, some experimental studies pointed out that TMAO and urea don’t seem to form hydrogen bonds.

To solve this puzzle, the scientists studied the intermolecular interactions theoretically as well as experimentally. In their work, they studied TMAO and urea molecules dissolved in water. Studying the molecules in water, however, represented a challenge as the molecules move very fast and it is therefore difficult to obtain information on molecular binding. Thus, in a first step, the researchers performed high-level computer simulations of the two molecules showing how they bind together.

To validate their theoretical findings, the scientists performed measurements using infrared laser spectroscopy and nuclear magnetic resonance spectroscopy, which they could compare to the theoretical findings.

Based on the agreement between measurement and simulation, they found that TMAO and urea do not form hydrogen bonds when solved in water, in contrast to the commonly believed picture. They could show that the oxygen atom of TMAO does not interact with the hydrogen atom of urea, but prefers to bind to the hydrogen atom of water.

Therefore, the oxygen atom of TMAO is occupied by water molecules, which prevents urea to connect to TMAO by hydrogen bonds. However, to protect the inner-cell proteins, it is known that the two molecules connect to each other. The researchers found out that another part of the TMAO molecule, which is hydrophobic, connects to urea.

Molecular-level insights into how TMAO and urea interact in an aqueous environment is a key to understand their role as chemical chaperones, i.e. how TMAO and urea help cells to create proteins in a correct form to maintain protein functionality. In the context of synthetic biology, such understanding is a prerequisite for the design of synthetic chaperones. The results are published in the journal “Chem”.

Max-Planck-Institute for Polymer Research

The Max Planck Institute for Polymer Research (MPI-P) ranks among the globally leading research centers in the field of polymer research since its foundation in 1984. The focus on soft materials and macromolecular materials has resulted in the unique worldwide position of the MPI-P and its research focus. Fundamental polymers research on both production and characterization as well as analysis of physical and chemical properties are conducted by scientific collaborators from all over the world. Presently over 500 people are working at the MPI-P, the vast majority of whom are engaged in scientific research.

Wissenschaftliche Ansprechpartner:

Dr. Yuki Nagata | Molecular Spectroscopy | nagata@mpip-mainz.mpg.de
Dr. Johannes Hunger | Molecular Spectroscopy | hunger@mpip-mainz.mpg.de

Originalpublikation:

https://doi.org/10.1016/j.chempr.2018.08.020

Weitere Informationen:

https://asunaroyuki.wixsite.com/sstgroup - Website of Dr. Yuki Nagata
https://www.mpip-mainz.mpg.de/liquid-dynamics - Website of Dr. Johannes Hunger

Dr. Christian Schneider | Max-Planck-Institut für Polymerforschung

More articles from Life Sciences:

nachricht New sensor detects rare metals used in smartphones
24.04.2019 | Penn State

nachricht Controlling instabilities gives closer look at chemistry from hypersonic vehicles
24.04.2019 | University of Illinois College of Engineering

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>