Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why sea fish don’t mind salty water? Researchers exploring cellular interplay of molecules

26.10.2018

For marine animals, it is crucial that the pressure in their cells – the so-called osmotic pressure – stays on a level which allows them to survive in salty water. Without adjusting pressure, the cells would implode or explode. In recent research, it has been found that two different molecules are responsible for controlling the inner cell pressure. These molecules are called Trimethylamine-N-oxide (TMAO) and urea. However, up to now, it was still unclear why two different molecules are needed. Together with international collaborators, researchers at the Max Planck Institute for Polymer Research solved this puzzle.

TMAO and urea are molecules that affect the osmotic pressure in living cells, so called osmolytes: With high concentrations of both urea and TMAO, marine animals can keep the osmotic pressure comparable to that of seawater. Additionally, TMAO and urea have side effects on proteins, which are also part of the cells. On the one hand, urea destabilizes proteins and leads therefore to cell death. TMAO, on the other hand, stabilizes the structure of proteins, as long as there is no excessive amount of it.


Researchers study the molecular secrets how fish adopt to the harsh environment in seawater

© Y. Nagata / MPI-P

In living cells, it has been found that TMAO and urea co-exist at an approximate molecular ratio of 1:2 (TMAO:urea) and it was anticipated that the two molecules can bind to each other. While every molecule itself interacts with the proteins in a stabilizing or destabilizing manner, the combination of TMAO and urea does not interact with proteins anymore. Therefore, the positive or negative effect of TMAO and urea, respectively, is cancelled by the combination of both molecules.

The scientists at the Max Planck Institute for Polymer Research together with scientists in Japan, China and the U. S. investigated how this cancelation of effects of the two molecules occurs. It is commonly believed that TMAO and urea interact intermolecularly via the hydrogen atom, which is part of the urea molecule, and the oxygen atom of TMAO via so-called hydrogen-bonds. On contrary, some experimental studies pointed out that TMAO and urea don’t seem to form hydrogen bonds.

To solve this puzzle, the scientists studied the intermolecular interactions theoretically as well as experimentally. In their work, they studied TMAO and urea molecules dissolved in water. Studying the molecules in water, however, represented a challenge as the molecules move very fast and it is therefore difficult to obtain information on molecular binding. Thus, in a first step, the researchers performed high-level computer simulations of the two molecules showing how they bind together.

To validate their theoretical findings, the scientists performed measurements using infrared laser spectroscopy and nuclear magnetic resonance spectroscopy, which they could compare to the theoretical findings.

Based on the agreement between measurement and simulation, they found that TMAO and urea do not form hydrogen bonds when solved in water, in contrast to the commonly believed picture. They could show that the oxygen atom of TMAO does not interact with the hydrogen atom of urea, but prefers to bind to the hydrogen atom of water.

Therefore, the oxygen atom of TMAO is occupied by water molecules, which prevents urea to connect to TMAO by hydrogen bonds. However, to protect the inner-cell proteins, it is known that the two molecules connect to each other. The researchers found out that another part of the TMAO molecule, which is hydrophobic, connects to urea.

Molecular-level insights into how TMAO and urea interact in an aqueous environment is a key to understand their role as chemical chaperones, i.e. how TMAO and urea help cells to create proteins in a correct form to maintain protein functionality. In the context of synthetic biology, such understanding is a prerequisite for the design of synthetic chaperones. The results are published in the journal “Chem”.

Max-Planck-Institute for Polymer Research

The Max Planck Institute for Polymer Research (MPI-P) ranks among the globally leading research centers in the field of polymer research since its foundation in 1984. The focus on soft materials and macromolecular materials has resulted in the unique worldwide position of the MPI-P and its research focus. Fundamental polymers research on both production and characterization as well as analysis of physical and chemical properties are conducted by scientific collaborators from all over the world. Presently over 500 people are working at the MPI-P, the vast majority of whom are engaged in scientific research.

Wissenschaftliche Ansprechpartner:

Dr. Yuki Nagata | Molecular Spectroscopy | nagata@mpip-mainz.mpg.de
Dr. Johannes Hunger | Molecular Spectroscopy | hunger@mpip-mainz.mpg.de

Originalpublikation:

https://doi.org/10.1016/j.chempr.2018.08.020

Weitere Informationen:

https://asunaroyuki.wixsite.com/sstgroup - Website of Dr. Yuki Nagata
https://www.mpip-mainz.mpg.de/liquid-dynamics - Website of Dr. Johannes Hunger

Dr. Christian Schneider | Max-Planck-Institut für Polymerforschung

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>