Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why sea fish don’t mind salty water? Researchers exploring cellular interplay of molecules

26.10.2018

For marine animals, it is crucial that the pressure in their cells – the so-called osmotic pressure – stays on a level which allows them to survive in salty water. Without adjusting pressure, the cells would implode or explode. In recent research, it has been found that two different molecules are responsible for controlling the inner cell pressure. These molecules are called Trimethylamine-N-oxide (TMAO) and urea. However, up to now, it was still unclear why two different molecules are needed. Together with international collaborators, researchers at the Max Planck Institute for Polymer Research solved this puzzle.

TMAO and urea are molecules that affect the osmotic pressure in living cells, so called osmolytes: With high concentrations of both urea and TMAO, marine animals can keep the osmotic pressure comparable to that of seawater. Additionally, TMAO and urea have side effects on proteins, which are also part of the cells. On the one hand, urea destabilizes proteins and leads therefore to cell death. TMAO, on the other hand, stabilizes the structure of proteins, as long as there is no excessive amount of it.


Researchers study the molecular secrets how fish adopt to the harsh environment in seawater

© Y. Nagata / MPI-P

In living cells, it has been found that TMAO and urea co-exist at an approximate molecular ratio of 1:2 (TMAO:urea) and it was anticipated that the two molecules can bind to each other. While every molecule itself interacts with the proteins in a stabilizing or destabilizing manner, the combination of TMAO and urea does not interact with proteins anymore. Therefore, the positive or negative effect of TMAO and urea, respectively, is cancelled by the combination of both molecules.

The scientists at the Max Planck Institute for Polymer Research together with scientists in Japan, China and the U. S. investigated how this cancelation of effects of the two molecules occurs. It is commonly believed that TMAO and urea interact intermolecularly via the hydrogen atom, which is part of the urea molecule, and the oxygen atom of TMAO via so-called hydrogen-bonds. On contrary, some experimental studies pointed out that TMAO and urea don’t seem to form hydrogen bonds.

To solve this puzzle, the scientists studied the intermolecular interactions theoretically as well as experimentally. In their work, they studied TMAO and urea molecules dissolved in water. Studying the molecules in water, however, represented a challenge as the molecules move very fast and it is therefore difficult to obtain information on molecular binding. Thus, in a first step, the researchers performed high-level computer simulations of the two molecules showing how they bind together.

To validate their theoretical findings, the scientists performed measurements using infrared laser spectroscopy and nuclear magnetic resonance spectroscopy, which they could compare to the theoretical findings.

Based on the agreement between measurement and simulation, they found that TMAO and urea do not form hydrogen bonds when solved in water, in contrast to the commonly believed picture. They could show that the oxygen atom of TMAO does not interact with the hydrogen atom of urea, but prefers to bind to the hydrogen atom of water.

Therefore, the oxygen atom of TMAO is occupied by water molecules, which prevents urea to connect to TMAO by hydrogen bonds. However, to protect the inner-cell proteins, it is known that the two molecules connect to each other. The researchers found out that another part of the TMAO molecule, which is hydrophobic, connects to urea.

Molecular-level insights into how TMAO and urea interact in an aqueous environment is a key to understand their role as chemical chaperones, i.e. how TMAO and urea help cells to create proteins in a correct form to maintain protein functionality. In the context of synthetic biology, such understanding is a prerequisite for the design of synthetic chaperones. The results are published in the journal “Chem”.

Max-Planck-Institute for Polymer Research

The Max Planck Institute for Polymer Research (MPI-P) ranks among the globally leading research centers in the field of polymer research since its foundation in 1984. The focus on soft materials and macromolecular materials has resulted in the unique worldwide position of the MPI-P and its research focus. Fundamental polymers research on both production and characterization as well as analysis of physical and chemical properties are conducted by scientific collaborators from all over the world. Presently over 500 people are working at the MPI-P, the vast majority of whom are engaged in scientific research.

Wissenschaftliche Ansprechpartner:

Dr. Yuki Nagata | Molecular Spectroscopy | nagata@mpip-mainz.mpg.de
Dr. Johannes Hunger | Molecular Spectroscopy | hunger@mpip-mainz.mpg.de

Originalpublikation:

https://doi.org/10.1016/j.chempr.2018.08.020

Weitere Informationen:

https://asunaroyuki.wixsite.com/sstgroup - Website of Dr. Yuki Nagata
https://www.mpip-mainz.mpg.de/liquid-dynamics - Website of Dr. Johannes Hunger

Dr. Christian Schneider | Max-Planck-Institut für Polymerforschung

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>