Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do animals fight members of other species?

24.04.2015

Male aggression against potential rivals for females explains much of it, UCLA biologists report

Why do animals fight with members of other species? A nine-year study by UCLA biologists says the reason often has to do with "obtaining priority access to females" in the area.


Male and female rubyspot damselflies mating

Courtesy of Mark Bjorklund

The scientists observed and analyzed the behavior of several species of Hetaerina damselflies, also known as rubyspot damselflies. For the study, published this month in the print edition of the journal Proceedings of the Royal Society B, researchers observed more than 100 damselflies a day in their natural habitat along rivers and streams in Texas, Arizona and Mexico.

Male damselflies always respond aggressively to males of their own species that fly into their territory. Males typically ignore males of another damselfly species when they do not compete for females, but respond aggressively to males of another species that invade their territory and attempt to mate with females.

Female damselflies almost always refuse to mate with males of a different species, said Gregory Grether, a UCLA professor of ecology and evolutionary biology and senior author of the study. But that doesn't stop some males from trying, especially in cases where the females of both species have similar coloration.

"We were surprised to see how well the degree of reproductive interference -- the competition for mates between species -- predicts the degree of aggression between species," said Jonathan Drury, who was lead author of the study and is now a postdoctoral researcher at the École Normale Supérieure in Paris.

Grether and Kenichi Okamoto, a postdoctoral scholar at North Carolina State University, developed a mathematical model predicting that as competition for mates increases, male aggression increases, and showing at what point aggression against another species becomes advantageous. Grether and Drury tested and confirmed their model with help from Christopher Anderson, an assistant professor of biological sciences at Dominican University. (Drury and Anderson were all previously doctoral students in Grether's laboratory.)

It's common to find two species of damselflies in one location. The biologists documented some cases where aggression between species has essentially disappeared because of substantial divergence in wing coloration. However, in most of the pairs of species they studied, there is very little difference in color, and males are as aggressive to males of another species as to males of their own species.

"Male damselflies often have difficulty distinguishing between females of their own species and another species when making split-second decisions about whether to pursue a female," Grether said. "I think that's the root cause of the persistence of male territorial aggression."

The researchers sectioned off a part of the river, marked the damselflies for identification, and observed and analyzed rates of fighting within and between species. Territorial battles between two males can last a few hours, the biologists found.

Damselflies typically live only a couple of weeks, and have few mating opportunities.

"Low levels of reproductive interference are associated with low levels of aggression, and high levels of reproductive interference are associated with high levels of aggression," Grether said.

The researchers also conducted experiments in which they captured damselflies and flew them, tethered with a transparent thread, into the nearby territories of other damselflies in order to measure the responses.

A male damselfly often rammed into a tethered male intruder of the same species more than 100 times in two minutes, they found, while blithely ignoring a tethered male of a species that differed substantially in wing coloration.

Grether believes the findings about territorial aggression are likely to hold true with other species that have mating territories, including reptiles, amphibians, insects and some species of birds. He wants to extend the research to species that are in competition for resources besides mates, such as birds, which compete for food and nesting sites.

Implications for humans

As for humans, Grether thinks reproductive interference and aggression between species may well have played an important role in our evolutionary past. Modern humans have existed for at least 200,000 years, he noted, and Neanderthals did not disappear until approximately 40,000 years ago.

"There is genetic evidence of interbreeding between the two species," Grether said. "Interbreeding and warfare with modern humans are usually viewed as completely different explanations for the demise of the Neanderthals, but they might not be different explanations after all. Fighting between Homo sapiens and Homo neanderthalensis groups might well have been motivated in part by inter-mating, just as it is in some cases of warfare between traditional human groups."

Interspecies aggression and its evolutionary impact are understudied subjects, Grether said.

###

The research is funded by the National Science Foundation (grant DEB-1020586).

Stuart Wolpert | EurekAlert!

Further reports about: animals coloration females fight reproductive territory wing coloration

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>