Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why cancer cells grow despite a lack of oxygen

25.11.2014

Healthy cells reduce their growth when there is a lack of oxygen (hypoxia). This makes it even more surprising that hypoxia is a characteristic feature of malignant tumours. In two publications in the current edition of the "Nature Communications" journal, researchers from Goethe University and the Justus-Liebig-University of Giessen report on how cancer cells succeed at circumventing the genetic program of growth inhibition.

Healthy cells reduce their growth when there is a lack of oxygen (hypoxia). This makes it even more surprising that hypoxia is a characteristic feature of malignant tumours. In two publications in the current edition of the "Nature Communications" journal, researchers from Goethe University and the Justus-Liebig-University of Giessen report on how cancer cells succeed at circumventing the genetic program of growth inhibition.


The loss of PHD3 is a crucial step in the growth of human malignant brain tumours (glioblastomas).

Garvalov et al./Nature Communications

It has long been known that PHD proteins (prolyl-hydroxylase domain proteins) play a key role among the regulators of hypoxia. They control the stability of the hypoxia-induced transcription factors (HIFs) which govern the adaptation of cells to a lack of oxygen. The two teams led by Professor Amparo Acker-Palmer, Goethe University, and Professor Till Acker, Justus-Liebig-University, have now discovered that a special PHD protein, PHD3, also controls the epidermal growth factor receptor (EGFR).

In healthy cells, PHD3 responds to stressors such as a lack of oxygen by stimulating the uptake of EGF receptors into the cell interior. Growth signals are down-regulated by this internalisation. "We have discovered that PHD3 serves as a scaffolding protein, binding to central adapter proteins such as Eps15 and Epsin1 in order to promote the uptake of EGFR into the cells," says Acker-Palmer. This process is disrupted in tumour cells due to the loss of PHD3. As a result, the internalisation of EGFR is suppressed, which leads to overactivity of EGFR signals, and thus to uncontrolled cell growth.

The research team was able to show that the loss of PHD3 is a crucial step in the growth of human malignant brain tumours (glioblastomas). The tumour cells thus become refractory to the growth-inhibiting signals under hypoxia. "Clinically, this discovery is highly relevant, because it shows an alternative mechanism for the hyperactivation of the EGF receptor that is independent of its genetic amplification. It can be therapeutically suppressed by EGFR inhibitors," explains Till Acker, a neuropathologist at the University of Giessen.

"Our work shows an unexpected and new function of PHD3 on the interface of two currently red-hot research areas: Oxygen measurement and EGFR signalling," Acker-Palmer explains. "This once again proves how significant growth receptor internalisation is to the development of cancer." This connection was already shown by the research team in 2010 for tumour angiogenesis (Sawamiphak et al, Nature 2010).

Publications:
Henze et al: Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR; Nature communications 25.11.2014; DOI 10.1038/ncomm6582

Garvalov et al.: PHD3 regulates EGFR internalization and signalling in tumours, Nature communications 25.11.2014, DOI: 10.1038/ncomms6577

Information: Prof. Amparo Acker-Palmer, Institute for Cell Biology and Neuroscience and the Buchmann Institute for Molecular Life Sciences, Campus Riedberg,Phone ++49(0)69 798- 42563, Acker-Palmer@bio.uni-frankfurt.de.
Prof. Till Acker, Institute of Neuropathology, University Clinic Giessen and Marburg GmbH, Arndtstraße 16, 35392 Gießen, Phone ++49(0)641 99-41181, till.acker@patho.med.uni-giessen.de

Goethe University is an institution with particularly strong research capabilities based in the European financial metropolis of Frankfurt. It celebrated its 100th anniversary in 2014. Founded in 1914 by liberal citizens of Frankfurt with private funds, the University has devoted itself to fulfilling its motto "Science for the Society" in its research and teaching activity right up to the present day. Many of the founding donors were of Jewish origin. In the last 100 years, Goethe University has produced pioneering contributions in the fields of social, societal and economic sciences, chemistry, quantum physics, brain research and labour law. On January 1st, 2008, it achieved an exceptional degree of independence as it returned to its historical roots as a privately funded university. Today it is one of the ten universities that are most successful in obtaining external research funding and one of the three largest universities in Germany with Clusters of Excellence in medicine, life sciences and humanities.

For more information, visit www2.uni-frankfurt.de/gu100

Publisher: President of Goethe University, Frankfurt am Main. Editor: Dr. Anne Hardy, Advisor for Scientific Communication, Marketing and Communication Department, Grüneburgplatz 1, 60323 Frankfurt am Main, Tel: ++49(0)69 798-12498, Fax: ++49(0)69 798-761 12531, hardy@pvw.uni-frankfurt.

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Further reports about: Communication EGF cancer cells malignant proteins receptor signals tumour tumour cells tumours

More articles from Life Sciences:

nachricht New RNA sequencing strategy provides insight into microbiomes
17.12.2018 | University of Chicago Medical Center

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Formed to Meet Customers’ Needs – New Laser Beams for Glass Processing

17.12.2018 | Physics and Astronomy

Preserving soil quality in the long term

17.12.2018 | Architecture and Construction

New RNA sequencing strategy provides insight into microbiomes

17.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>