Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Who am I? How cells find their identity

27.04.2018

The research group of Alex Schier, Director of the Biozentrum, University of Basel, has investigated more closely how a single embryonic cell develops into a heart, nerve or blood cell. For the first time, the researchers have been able to reconstruct the developmental trajectories of individual embryonic cells. Their results also suggest that cells can change their path during their maturation process. The results of the study with around 40,000 cells have now been published in “Science”.

The origin of every cell of our body is a single cell, the fertilized egg. On the way to become a specialized cell, whether blood, heart or nerve cells, its descendants follow a genetic program. This program determines the identity of a cell, its features and function.


Development of a zebrafish, 28 hours post fertilization.

The research team led by Alex Schier, Director of the Biozentrum, University of Basel, and currently still research group leader at Harvard University in Cambridge, has now developed a new method that enables the scientists for the first time to trace the entire history of the differentiation of individual cells.

By combining the differentiation trajectories they have been able to construct a full developmental tree for embryogenesis. Furthermore, the team discovered that during differentiation, cells can leave their path and thus change their identity.

A widely branched tree for cell development

In their study, the team isolated around 40,000 cells and 25 different cell types that form in zebrafish over a period of nine hours. To investigate the maturation of these cells, they analyzed the RNA, a copy of the genetic material. “The RNA tells us, which genes are active and determines the function and characteristics of a cell”, says Schier.

In order to merge and compare the data, Schier’s team developed a new software (URD). While previous studies in this field are based on the examination of a handful of genes, the new high-throughput single-cell RNA sequencing method enables the analysis of all active genes during cell development. With this new technology, the team has been able to reconstruct, for the first time, a widely branched tree that traces the development of each individual cell, starting with the fertilized egg cell. In addition, they mapped the cells to their spatial origin in the early embryo.

Finding cell identity is more flexible than expected

The results show that the genetic program that a cell follows on the way to maturity is by no means set in stone. “It seems that the developmental path of a cell is more flexible than we previously expected”, says Alex Schier. So far, it was assumed that developing cells follow a predetermined path, like marbles rolling down a hill until they stop at their predestined place. The study now suggests that signals from the environment can have such a strong influence on the cells, that they leave the initial trajectory and change their path, thus taking on a new identity.

Entire development as a cell lineage tree

In a next step, the research group will expand the cell lineage tree, investigate more cell types and follow the development of cells over a longer period of time. “My aim is to merge the developmental trajectories and the lineage trees to one complete whole. If we can understand the logic behind cell differentiation, we may, one day, be able to answer the question: How many ways are there to build a heart or a brain?”

Original source

Jeffrey A. Farrell, Yiqun Wang, Samantha J. Riesenfeld, Karthik Shekhar, Aviv Regev and Alexander F. Schier
Single-cell reconstruction of developmental trajectoriesduring zebrafish embryogenesis
Science (2018)

Kontakt:

Heike Sacher, University of Basel, Biozentrum, Communications,

Tel. +41 61 207 14 49, Email: heike.sacher@unibas.ch

Kommunikation & Marketing

Heike Sacher, University of Basel | Universität Basel

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>