Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White Glow

08.07.2009
Dye-doped DNA nanofibers emit white light

Efficient energy transport plays an important role in the development of optoelectonic materials.

The true masters of energy transfer via a hierarchical arrangement of different molecules are the photosynthetic mechanisms of plants. Self-organized systems of biomolecules could also provide a starting point for effective energy transport in future opotoelectronic devices.

A team of researchers at the University of Connecticut and the US Air Force Research Laboratory has now successfully used the electrospinning of DNA complexes to produce nanofibers that incorporate two different fluorescing dyes in such a way that energy can efficiently be transferred from one dye to the other. The color of the resulting fluorescence can be controlled by means of the ratio of the two dyes. As reported in the journal Angewandte Chemie, the team led by Gregory A. Sotzing was thus able to produce nanofibers that emit pure white light—a color that is usually very difficult to achieve in such systems.

In the electrospinning process, a polymer solution is propelled through an electrical field. This results in the formation of nanofibers that are deposited in the form of a mat. When DNA is subjected to such a spinning process in the presence of a surfactant and the desired fluorescence dyes, the result is a network of DNA fibers with organized microstructure containing a very uniform distribution of the dyes.

Both dyes are tuned so that they can enter into a special interaction called fluorescence resonance energy transfer (FRET). In this process, “energy packets” from an excited fluorescence dye (donor) are transferred to a second fluorescence dye (acceptor) with no radiation. The intensity of the FRET depends, among other things, on the distance between the two dyes. The two dyes bind to different locations on the DNA, so that the correct spatial distribution for optimal FRET can be maintained—even at low acceptor concentrations.

Upon irradiation with UV light, the donor absorbs the photons and emits blue light. If acceptor molecules are present at the right distance, some of this energy is not re-emitted; instead it is “passed on” from the donor to the acceptor by means of the radiation-free FRET process. The excited acceptor molecules then emit the energy as fluorescence—in orange. Depending on the ratio of donor and acceptor concentrations, the color of the light changes—from blue through pure white to orange. The color can also be fine-tuned by changing the overall dye density in the matrix. Increasing the dye loads from 1.33 to 10 % can change a “cold” white light to a “warm” tone.

Author: Gregory A. Sotzing, University of Connecticut, Storrs (USA), http://chemistry.uconn.edu/sotzing.html

Title: White Luminescence from Multiple-Dye-Doped Electrospun DNA Nanofibers by Fluorescence Resonance Energy Transfer

Angewandte Chemie International Edition 2009, 48, No. 28, 5134–5138, doi: 10.1002/anie.200900885

Gregory A. Sotzing | Angewandte Chemie
Further information:
http://chemistry.uconn.edu/sotzing.html
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>