Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When Nerve Cells Detect Patterns for Acquired Knowledge

11.11.2016

Researchers from Heidelberg and Graz investigate how neurons sample probability distributions

For observations based on sensory data, the human brain must constantly verify which "version" of reality underlies the perception. The answer is gleaned from probability distributions that are stored in the nerve cell network itself.


Sampling a probability distribution of handwritten numbers by a stochastic network

Mihai A. Petrovici

The neurons are able to detect patterns that reflect acquired knowledge. Applying mathematical methods, physicists from Heidelberg University and researchers from Graz University of Technology have proven this phenomenon in their investigations. The current research results, published in the journal "Physical Review", are of major significance in developing new types of computer systems.

One of the most important functions of our brain is to create an internal model of our environment. There are two categories of information available for this purpose – the acquired knowledge about known objects and a constant stream of sensory data that can be compared against and continually added to existing knowledge. These sensory data are the simplest, "directly" available building blocks of perception.

However, observations that are based on sensory data are often compatible with multiple "realities" at the same time, as the phenomenon of optical illusions clearly proves. The brain is therefore faced with the challenge of knowing all the possible versions of the underlying reality. To make this determination, the brain jumps back and forth between these versions of reality, sampling a probability distribution.

The researchers working with Heidelberg physicist Prof. Dr Karlheinz Meier studied this process with the help of formal mathematical methods applied at the level of individual nerve cells, called neurons. The model of individual neurons used is strictly deterministic. This means that each repeated stimulation from external stimuli always evokes the same response behaviour.

The brain, however, is a network of neurons that communicate with one another. When a nerve cell is sufficiently stimulated by its neighbour, it fires off a short electrical pulse, thereby stimulating other neurons. In a large network of active neurons, nerve cells become stochastic – their "response" is no longer determined, i.e., precisely predictable, but follows statistical probability rules.

"In our studies we were able to show that such neurons obtain their response from probability distributions that are stored in the network itself and that are sampled by the nerve cells," explains Prof. Meier. This is how neurons are able to detect patterns that reflect acquired knowledge. The research was conducted as part of the European Human Brain Project, in which the Heidelberg researchers under the direction of Karlheinz Meier are developing new computer systems using the brain as a model.

"The concept of statistical sampling of acquired probabilities is extremely well-suited for implementing a new computer architecture. It is one focus of the current research our working group is conducting," states the physicist, who teaches and pursues research at Heidelberg University's Kirchhoff Institute for Physics.

Original publication:
M.A. Petrovici, J. Bill, I. Bytschok, J. Schemmel, and K. Meier: Stochastic inference with spiking neurons in the high-conductance state. Physical Review E 94, 042312 (published 20 October 2016), doi: 10.1103/PhysRevE.94.042312

Contact:
Dr Mihai A. Petrovici
Kirchhoff Institute for Physics
Phone +49 6221 54-9897
mpedro@kip.uni-heidelberg.de

Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.kip.uni-heidelberg.de/vision

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: Cells Nerve nerve cell nerve cells neurons new computer observations phenomenon

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>