Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When confronted, a single neuron helps a fruit fly change course

23.08.2018

University of Oregon-led research maps the communications circuitry between a bilateral pair of neurons in the brain to motor neurons that control muscles that guide movement

In the fruit fly, a single pair of brain neurons command backward locomotion in both larvae and adults, researchers report.


Cross section of a fruit fly ventral nerve (spinal) cord showing motor neurons involved in sensorimotor processing -- those that respond to a wasp and act to rapidly switch directions.

Courtesy of Chris Doe

The mapping of descending circuitry that can smoothly and rapidly switch movement from forward to backward is unprecedented, said Chris Doe, a biology professor and co-director of the University of Oregon's Institute of Neuroscience. He was principal investigator on the project, detailed in a paper published Aug. 2 in the journal eLife.

"The big step we've made is that we have a single neuron that both triggers a new behavior and suppresses an antagonistic behavior," said Doe, who also is a Howard Hughes Medical Institute investigator and member of the UO's Institute of Molecular Biology.

"It is even more striking, because these neurons drive the same behavioral switch in larvae and adults, which have completely different motor neurons and modes of locomotion," he said. "Our finding that the same pair of neurons control crawling of a limbless maggot and walking of an adult fly was quite surprising."

Changing directions from forward to reverse is vital to survival for fruit flies. Drosophila larvae die after wasps lay eggs that consume larvae from the inside out. Spiders, ants and beetles eat adult fruit flies. Just how neural circuits trigger smooth switching between antagonistic behaviors is a mystery in most animals, Doe said, but it has been seen in nematodes as well.

The methodology behind the discovery provides a way for scientists to link other direct connections between individual brain neurons and nervous system neurons. Doe's lab already is looking at neurons tied to navigation behavior in fruit flies.

The seven-member research used genetic screening, electron microscopy, optogenetics and manual manipulations in the project. They initially looked generally for as many as 10 behavioral responses, but then focused on forward-backward motion. Fluorescent proteins inserted into larvae and adult flies helped track telltale chemical flows in the circuitry when behavior changed.

The team methodically moved through several steps to identify the two backward-inducing brain neurons, starting with more than 300 neurons and gradually winnowing down the population until the final two neurons were found.

The biggest surprise, Doe said, was realizing that the same pair of neurons in a larva retracted its connection to the suite of muscles during metamorphosis and then re-engaged with the motor neurons for the six legs that control muscles in the adults. In limbless larvae, crawling is done by peristalsis, or contractions.

"Limbed locomotion involves a pattern of motion, legs, that is completely different," Doe said. "All the motor neurons are different in the two stages. Those in larvae are lost in metamorphosis. The brain neuron apparently recognizes this in both systems."

The neuron, Doe said, drove halted forward motion and induced backward motion intensely and continuously. For escape purposes, one behavior must be rapidly inactivated by way of neural communication. Flies and mosquitoes, for instance, can sense a human's swat and change directions to avoid contact. Larvae can recognize and avoid noxious environments like high salt or bright light using backwards locomotion.

"Until now, no one has shown that there is an upstream neuron that can coordinately suppress some behaviors and induce others," he said. "Our study gives other researchers a good example of what they may expect to find. A fly has many behaviors. The idea is to map the neurons and circuits controlling all."

The discovery emerged from basic, or fundamental level, research. Doe has explored the early development of neural stem cells as an HHMI investigator since 1994. About five years ago, his lab began studying neural circuits generating motor behaviors, such as crawling or flying.

Such research, as specific neural networks become better understood, Doe said, potentially could help to improve the precision of human prosthetics. It could also feed into robotics, assuring accurate antagonistic responses for controlling bomb-searching robots or help guide rovers exploring the surfaces on other planets, he said.

###

In addition to Doe, team members were Arnaldo Carreira-Rosario, Aref Arzan Zarin, Matthew Q. Clark and Laurina Manning, all of the UO, and Richard Fetter and Albert Cardona, both of the HHMI's Janelia Research Campus.

HHMI and National Institutes of Health grants primarily funded the research. A Porter Physiology Development Fellowship awarded to Clark in 2015-15 from the American Physiological Society also supported the work.

Source: Chris Doe, professor of biology, co-director UO Institute of Neuroscience, HHMI investigator, 541-346-4877, cdoe@uoregon.edu

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.

Links:

About Chris Doe: http://ion.uoregon.edu/content/chris-doe-0

Doe HHMI lab: https://www.hhmi.org/scientists/chris-q-doe

Media Contact

Jim Barlow
jebarlow@uoregon.edu
541-346-3481

 @uoregon

http://around.uoregon.edu 

Jim Barlow | EurekAlert!
Further information:
http://dx.doi.org/10.7554/eLife.38554

Further reports about: HHMI fly fruit flies fruit fly larvae muscles neural circuits neurons single neuron

More articles from Life Sciences:

nachricht Too much of a good thing: overactive immune cells trigger inflammation
16.09.2019 | Universität Basel

nachricht The sleep neuron in threadworms is also a stop neuron
16.09.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>