Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When bees are freezing

20.05.2019

When it gets cold outside in winter, people like to cuddle up together. This mechanism is vital for the survival of bees: they are located in the centre of the hive. A functioning temperature regulation within the hive is also crucial throughout the year, both for the brood and for combating the so-called varroa mite. Scientists at the Max Planck Institute for Polymer Research (MPI-P) led by Prof. Katharina Landfester and Dr. Stanislav Balouchev are working on a project funded by the Volkswagen Foundation to measure and ultimately actively influence the temperature distribution in a hive.

A beehive is a complex ecosystem - not every bee can be considered separately, but the accumulation of all bees can be seen as a unique and huge superorganism that lives and works - but can also become ill.


Bees can fight parasites in their hive with different methods

© MPI-P

The most important bee parasite worldwide is the so-called "Varroa mite", which triggers the bee disease "Varrose". Larvae are damaged, which makes the hatching bees about one tenth smaller than healthy bees.

"After about 18 months after the first infection, a hive is dead if nothing is done about it," says Dr. Stanislav Balouchev of the MPI-P.

One of the bees' most important weapons in the fight against the disease is the increased temperature that bees can produce in their hives. Bees can press their chest against a honeycomb and by moving their chest muscles increase the temperature inside the honeycomb to such an extent that the mite multiplies much less and the colony dies within a short time.

In addition, infected bees can send out chemical warning signals, which ensure that other bees change their hygiene procedures and scratch the infected bee in order to shake off the mite.

Both methods - either by raising the temperature or by mechanically scraping off the mite - require sufficient energy, which the bees have to draw from the valuable supply of honey. "Where there are enough flowers and thus nectar, for example in South-East Asia, where the Varroa mite originally comes from, these Eastern bees (Apis cerana) do not need to save energy," explains Stanislav Balouchev.

"In our region, however, nectar is a precious resource for the native western bees (Apis mellifera), and bees do not have an infinite amount of energy left to fight Varrose."

In a recently launched project funded by the Volkswagen Foundation, the scientists of Prof. Katharina Landfester's department want to measure the temperature in a beehive. "We want to measure the optimum temperature distribution in three dimensions," says Prof. Landfester.

"The average temperature, as obtained with thermometers, for example, is of no use to us in this case - we want to use the three-dimensional temperature distribution to determine whether a hive is still healthy or is already infected in individual combs."

The researchers are therefore planning to develop miniature temperature sensors that have to meet certain requirements for use. On the one hand, they must have an accuracy that allows a temperature measurement better than 0.1 °C. On the other hand, the measuring device must be accepted by the bees: The sensors must literally not "smell".

"We are planning to develop the sensors in such a way that we can print them ourselves with a 3D printer as required and thus measure the temperature in each individual honeycomb," says Katharina Landfester. "If we detect deviations from the optimal temperature distribution, the next step will be to develop an active temperature control system that allows the temperature to be raised at specific points in the hive."

Several hives have now been set up at the MPI-P for the project. Over the next few months, the bees will be able to adapt to their new environment before the scientists start developing sensors and equipping the hives with them.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Katharina Landfester
landfest@mpip-mainz.mpg.de
Tel.: 06131-379 170

Dr. Stanislav Balouchev
balouche@mpip-mainz.mpg.de
Tel.: 06131-379 485

Dr. Christian Schneider | Max-Planck-Institut für Polymerforschung
Further information:
http://www.mpip-mainz.mpg.de

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Protein pores packed in polymers make super-efficient filtration membranes

A multidisciplinary team of engineers and scientists has developed a new class of filtration membranes for a variety of applications, from water purification to small-molecule separations to contaminant-removal processes, that are faster to produce and higher performing than current technology. This could reduce energy consumption, operational costs and production time in industrial separations.

Led by Manish Kumar, associate professor in the Cockrell School of Engineering at The University of Texas at Austin, the research team describes their new...

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Scientists find far higher than expected rate of underwater glacial melting

29.01.2020 | Earth Sciences

What's in your water?

29.01.2020 | Power and Electrical Engineering

Screening sweet peppers for organic farming

29.01.2020 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>