Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Holds Phosphorus Together?

17.09.2014

Computation of the stabilities and crystal structures of known and new phosphorus allotropes made of nanotubes

What holds white, black, and red phosphorus together—and prevents it from falling apart, for example into much-sought-after atomically thin networks and nanowires? This is what German scientists now found out using numerical modeling. As they explain in the journal Angewandte Chemie, Van der Waals forces, weak interactions between covalently bonded phosphorus units, play the key role.

Phosphorus occurs in several different forms—more than those described in classic textbooks. They each consist of different molecular building blocks aggregated into a solid. Reactive, white phosphorus is used in matchsticks, among other things, and exists in three different crystal structures.

These all consist of individual tetrahedra made of phosphorus atoms, but the tetrahedra are arranged differently within the different crystal structures. Under pressure—or by means of a new method developed by Tom Nilges (TU Munich) and Peer Schmidt (BTU Cottbus-Senftenberg)—white phosphorus can be converted to inert black phosphorus, the most stable form at room temperature.

This form and another high-pressure allotrope both consist of corrugated layers of phosphorus atoms. The isolation of individual layers to make “phosphorene” (analogous to graphene) is the object of current research. When white phosphorus is heated, it is converted to various forms of red phosphorus. Until recently, only the structure of one of these, violet Hittorf’s phosphorus, was known. It consists of pentagonal nanotubes of covalently bonded phosphorus atoms.

In recent years, Arno Pfitzner (University of Regensburg), Michael Ruck (TU Dresden), and other researchers have produced other allotropes containing single and paired phosphorus nanotubes that occur as fibrous red crystals or red-brown variants. The structures of the nanotube modifications and the stabilities of the new forms relative to the known ones remained unclear.

Richard Weihrich, Arno Pfitzner, and their co-workers at the University of Regensburg, RWTH Aachen, BTU Cottbus-Senftenberg, and TU Munich have now successfully used density functional theory (DFT) to establish the order of stability for the entire series of crystalline phosphorus allotropes and to determine the structures of the new single-rod modifications. Although conventional DFT calculations were too imprecise, the researchers were able to obtain excellent agreement with experimental results and precise predictions by using a special correction term.

This term takes into consideration the Van der Waals forces, weak interactions between the molecules, layers, and tubes of the different forms. These interactions play a significant role for phosphorus. “Despite significant differences, all phosphorus allotropes consist of covalent substructures that are held together by Van der Waals interactions,” explains Weihrich. “We have now been able to comprehensively compute the stabilities of even those allotropes that are energetically very similar.

We have also been able to correctly predict structures on the basis of the van der Waals interactions. It was thus also possible to integrate the recently discovered tubular modifications and to predict the structure of the previously unknown crystalline structures of phosphorus nanotubes.” These weak interactions are highly relevant to new research into single- and multiple-layer “phosphorenes” as well as the possible separation of individual phosphorus nanotubes.

About the Author

Dr. Richard Weihrich leads a research group at the Institute of Inorganic chemistry, University of Regensburg, Germany. Over the last 12 years, he has worked in fields of solid-state chemistry in Regensburg, Bordeaux, Paris, Dresden, and Ulm. With combined experimental and computer-assisted methods he explores novel materials with outstanding structure–property relations including spintronics, superconductors, and energy-based materials. His research on phosphorous related materials is founded by the DFG (Deutsche Forschungsgemeinschaft).

Author: Richard Weihrich, Universität Regensburg (Germany), http://www.uni-regensburg.de/chemie-pharmazie/anorganische-chemie-weihrich/

Title: The Extended Stability Range of Phosphorus Allotropes

Angewandte Chemie International Edition Permalink to the original article: http://dx.doi.org/10.1002/anie.201404147 – Please use in your news piece to make sure altmetric.com picks it up and a link to your piece is shown on the journal's website.

Richard Weihrich | Angewandte Chemie

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>