Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Holds Chromosomes Together - Max Planck Scientists Elucidate Operating Mode of DNA-Packaging

26.05.2015

All living organisms consist of cells that have arisen from other living cells by the process of cell division. In order to ensure that the genetic material is equally and accurately distributed between the two daughter cells during cell division, the DNA fibers must remain in an orderly and closely-packed condition.

At the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich, scientists have now elucidated how this packaging process works in bacteria. Their studies showed that the SMC protein complex holds DNA together like a clip and thus keeps the genetic material in order.


The SMC protein complex (green, blue, orange) embraces the DNA like a clip and thus, keeps the genetic material in order.

Larissa Wilhelm / Copyright: MPI of Biochemistry

In each human cell, about two meters of DNA must fit into a cell nucleus that has a diameter of only a few thousandths of a millimeter. Here, the DNA is organized in individual chromosomes. In order to ensure the DNA’s secure transport during cell division, the long and coiled DNA fibers must be tightly packed.

So far, scientists have only a sketchy understanding of this step: The SMC protein complexes play a key role in this process. They consist of two arms (SMC) and a bridge (kleisin). Together, they form a ring-like structure. “You can understand how important these protein complexes are when you look at their evolution,” explains Larissa Wilhelm, PhD student at the MPI of Biochemistry. “Structure and operating mode are quite similar in bacteria and humans.”

There are different possibilities as to how the SMC protein complex could pack up DNA. It could for example stick together the different DNA fibers. However, the Max Planck scientists were able to show in bacteria that the SMC protein arms embrace the DNA like a clip, thus enabling the connection of pieces of the DNA that lie wide apart from each other.

In a next step, the members of the research group “Chromosome Organization and Dynamics” want to find out whether the clip either opens for a short period of time in which it embraces already formed DNA loops, or whether the clip first binds to the DNA and then forms DNA loops itself by encasing the DNA.

“Our results could also help to better understand the complex organization of human chromosomes and hereby allow insights into the development of genetic defects such as Trisomy 21” says Stephan Gruber, group leader at the MPI of Biochemistry.

Original Publication
L. Wilhelm, F. Bürmann, A. Minnen, H.-C. Shin, C.P. Toseland, B.-H. Oh, S. Gruber: SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. eLIFE, May 7, 2015.
DOI: 10.7554/eLife.06659

Contact
Dr. Stephan Gruber
Chromosome Organization and Dynamics
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: sgruber@biochem.mpg.de
www.biochem.mpg.de/gruber

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Phone +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
www.biochem.mpg.de/news

Weitere Informationen:

http://www.biochem.mpg.de/en/news - More press release of the Max Planck Institute of Biochemistry
http://www.biochem.mpg.de/gruber - Website of the research group "Chromosome Organization and Dynamics" (Stephan Gruber)

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>