Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waxy plant substance key for absorption of water, nutrients

26.05.2009
While proving a long-held theory that suberin blocks water and nutrient absorption in plants, a Purdue University scientist learned more about manipulating the substance to better feed plants.

It has long been believed that suberin, a waxy substance between some plant cells, acts as a barrier for the movement of water in a plant's roots.

David E. Salt, a professor of plant molecular physiology, discovered a mutant form of the plant Arabidopsis - enhanced suberin 1 or ESB1 - with twice as much suberin as wild varieties, giving him a way to test the theory. The results of Salt's study were published Friday (May 22) in the early online version of the journal PLoS Genetics.

Salt also discovered which pathways particular nutrients use to get into a plant's shoots based on suberin concentration. By adjusting the amount of suberin in roots, Salt said plants could be engineered to allow for easier absorption of beneficial nutrients.

"This is the first time that the dogma in the textbooks has been tested genetically. It's been known for a long time that this material exists in the cell, but there's been no genetic proof to show what it does," Salt said. "We now have another tool in our toolbox to manipulate how plants take up water and mineral nutrients."

Using the plant with twice the amount of suberin, Salt showed that the plant activated a defense mechanism to keep from wilting. Since suberin was restricting water absorption, the plant allowed less transpiration, or evaporation of water from the leaves.

To further prove the theory, Salt was able to cut shoots off the wild-type plants and graft them onto mutant roots, and vice versa. The nutrient compositions in the shoots changed, reflecting the effect suberin in the roots had on the plants' absorption ability.

"You put a mutant root onto a wild-type shoot and the elemental composition in the wild-type shoot starts to look like a mutant shoot," Salt said. "We saw the same thing with water loss."

Some nutrients use a symplastic route, moving through cells' cytoplasm to gain access to the plant. Others use an apoplastic route, moving through the outer cell walls. The suberin acts as a filter, blocking some water from passing through cell walls. The more suberin, the more difficult it is for nutrients to pass through the cell walls.

"Just like animals, plants want to select the things they take in," Salt said. "They want a certain amount of potassium or a certain amount of nitrogen. This allows them to choose how much they get."

In Salt's experiments, the plants with more suberin had less calcium, manganese and zinc in their leaves, meaning a significant amount of those nutrients pass apoplastically through the root. Sodium, sulfur, selenium, molybdenum and arsenic showed higher concentrations, meaning they are generally absorbed symplastically.

The plants with more suberin - which decreased transpiration - used the water they were able to absorb more efficiently. Salt said plants could be genetically engineered for specific amounts of suberin so they would more easily absorb beneficial nutrients and use less water in a more efficient manner.

The National Science Foundation funded Salt's research. The next step is to determine the role of the ESB1 gene in suberin biosynthesis.

Abstract on the research in this release is available at: http://news.uns.purdue.edu/x/2009a/090522SaltSuberin.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>