Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water world

20.11.2017

Mapping 'damage trails' lets Washington U. researchers follow the water in Photosystem II

Researchers at Washington University in St. Louis have traced the paths of three water channels in an ancient photosynthetic organism to provide the first comprehensive, experimental study of how that organism uses and regulates water to create energy.


The three-colored formations (red, purple, yellow) are the three groups of damaged amino acids in Photosystem II identified in this study. They are centered on the active site ("Mn cluster," shown in green), and trace three pathways connecting the Mn cluster to the surface of the complex, the watery bulk medium of the cell.

(Credit: Science Advances manuscript # aao3013, Figure 3B.)

Photosynthesis is the chemical conversion of sunlight into chemical energy via an electron transport chain essential to nearly all life on our planet. All plants operate by photosynthesis, as do algae and certain varieties of bacteria.

Himadri B. Pakrasi, Myron and Sonya Glassberg/Albert and Blanche Greensfelder University Distinguished Professor and Director, International Center for Energy, Environment and Sustainability, post-doctoral researcher Daniel A. Weisz, and Michael L. Gross, professor of chemistry, studied the great granddaddy of all photosynthetic organisms -- a strain of cyanobacteria -- to develop the first experimental map of that organism's water world.

The finding advances photosynthesis research but also presents an advance in green fuels research:

To convert sunlight into a usable form of energy, photosynthetic organisms require water at the "active site" of the Photosystem II protein complex. But the channels through which water arrives at the active site are difficult to measure experimentally. Reactive oxygen species are produced at the active site and travel away from it, in the opposite direction as water, leaving a "damage trail" in their wake.

"We identified the damaged sites in Photosystem II using high-resolution mass spectrometry and found that they reveal several pathways centered on the active site and leading away from it all the way to the surface of the complex," said Weisz, lead author of the paper that appeared in the Nov. 17 issue of Science Advances. "We propose that these pathways represent channels within the complex that could be used to deliver water to the active site."

"Photosystem II has a very complex mechanism, and it's really important to understand its processes and evolution," said Pakrasi, who has researched cyanobacteria extensively for more than 25 years. "There is a growing interest in green energy, and our knowledge of this enzyme's behavior could someday be put to use to create an artificial system that mimics the real enzyme to produce an abundant amount of sustainable energy."

The active site of Photosystem II is a cluster of manganese, calcium and oxygen ions buried deep within the complex, far away from the watery medium of the cell. Researchers have long speculated that the active site, or manganese cluster, must have a channel system, and theoretical, supercomputer-generated models tenuously have predicted their existence. But water motion is hard to characterize experimentally.

The researchers took a roundabout path to delineate the channels. The "damage trail" is comprised of 36 amino acid residues from essentially three proteins found near the manganese cluster by the highly sophisticated mass spectrometer of chemist Gross, who was Weisz's doctoral co-adviser along with Pakrasi and also is appointed to the Washington University School of Medicine for his work in mass spectrometry. These damaging reactive oxygen species, also known as radicals, emanate and disperse from the cluster outward toward the cell's watery medium. The radicals pass through Photosystem II like a tornado, attacking and damaging the nearest amino acid components of Photosystem II that they encounter along their path.

Because the radicals and water have similar properties, such as size and hydrophilicity, the researchers propose that the damage trail pathways going out from the cluster are very similar to the paths that water takes inward toward the active site.

"We're directly observing the paths that the radicals take, not those of water," Weisz said. "But given the radicals' similar properties to water as well as previous computer modeling results, we believe that those pathways are the same ones that water takes inward."

Such an approach to discovering the water channels is considered a proxy because it's based on the movement of the highly reactive radicals and not of the water itself.

The proxy, Weisz said, "is like leaving a trail of bread crumbs along a path in the forest. If someone is able to find the bread crumbs, they can retrace the path taken out of the forest."

The researchers were able to identify the many damaged residues because of the incredible accuracy, speed and sensitivity of Gross's mass spectrometry instrument. "With earlier instruments that were slower and less sensitive, it was harder to confidently identify large numbers of damaged sites," Weisz said. "The powerful capabilities of this instrument enabled us to obtain these results ."

"Cyanobacteria are the progenitors of chloroplasts in plants," Pakrasi said. "Photosystem II is conserved across all oxygenic photosynthetic organisms. We know for sure that nature devised this machine only once, then transferred it from cyanobacteria to algae and to plants."

###

The study was supported by: grant DE-FG02-99ER20350 from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, United States Department of Energy (DOE); DE-SC 0001035 from the Photosynthetic Antenna Research Center, an Energy Frontier Research Center funded by the U.S. DOE, Office of Basic Energy Sciences; and 2P41GM103422 from the National Institutes of Health.

Media Contact

Chuck Finder
chuck.finder@wustl.edu
412-996-5852

 @WUSTLnews

http://www.wustl.edu 

Chuck Finder | EurekAlert!

More articles from Life Sciences:

nachricht A new 'cool' blue
17.01.2020 | American Chemical Society

nachricht Neuromuscular organoid: It’s contracting!
17.01.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>