Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water world

20.11.2017

Mapping 'damage trails' lets Washington U. researchers follow the water in Photosystem II

Researchers at Washington University in St. Louis have traced the paths of three water channels in an ancient photosynthetic organism to provide the first comprehensive, experimental study of how that organism uses and regulates water to create energy.


The three-colored formations (red, purple, yellow) are the three groups of damaged amino acids in Photosystem II identified in this study. They are centered on the active site ("Mn cluster," shown in green), and trace three pathways connecting the Mn cluster to the surface of the complex, the watery bulk medium of the cell.

(Credit: Science Advances manuscript # aao3013, Figure 3B.)

Photosynthesis is the chemical conversion of sunlight into chemical energy via an electron transport chain essential to nearly all life on our planet. All plants operate by photosynthesis, as do algae and certain varieties of bacteria.

Himadri B. Pakrasi, Myron and Sonya Glassberg/Albert and Blanche Greensfelder University Distinguished Professor and Director, International Center for Energy, Environment and Sustainability, post-doctoral researcher Daniel A. Weisz, and Michael L. Gross, professor of chemistry, studied the great granddaddy of all photosynthetic organisms -- a strain of cyanobacteria -- to develop the first experimental map of that organism's water world.

The finding advances photosynthesis research but also presents an advance in green fuels research:

To convert sunlight into a usable form of energy, photosynthetic organisms require water at the "active site" of the Photosystem II protein complex. But the channels through which water arrives at the active site are difficult to measure experimentally. Reactive oxygen species are produced at the active site and travel away from it, in the opposite direction as water, leaving a "damage trail" in their wake.

"We identified the damaged sites in Photosystem II using high-resolution mass spectrometry and found that they reveal several pathways centered on the active site and leading away from it all the way to the surface of the complex," said Weisz, lead author of the paper that appeared in the Nov. 17 issue of Science Advances. "We propose that these pathways represent channels within the complex that could be used to deliver water to the active site."

"Photosystem II has a very complex mechanism, and it's really important to understand its processes and evolution," said Pakrasi, who has researched cyanobacteria extensively for more than 25 years. "There is a growing interest in green energy, and our knowledge of this enzyme's behavior could someday be put to use to create an artificial system that mimics the real enzyme to produce an abundant amount of sustainable energy."

The active site of Photosystem II is a cluster of manganese, calcium and oxygen ions buried deep within the complex, far away from the watery medium of the cell. Researchers have long speculated that the active site, or manganese cluster, must have a channel system, and theoretical, supercomputer-generated models tenuously have predicted their existence. But water motion is hard to characterize experimentally.

The researchers took a roundabout path to delineate the channels. The "damage trail" is comprised of 36 amino acid residues from essentially three proteins found near the manganese cluster by the highly sophisticated mass spectrometer of chemist Gross, who was Weisz's doctoral co-adviser along with Pakrasi and also is appointed to the Washington University School of Medicine for his work in mass spectrometry. These damaging reactive oxygen species, also known as radicals, emanate and disperse from the cluster outward toward the cell's watery medium. The radicals pass through Photosystem II like a tornado, attacking and damaging the nearest amino acid components of Photosystem II that they encounter along their path.

Because the radicals and water have similar properties, such as size and hydrophilicity, the researchers propose that the damage trail pathways going out from the cluster are very similar to the paths that water takes inward toward the active site.

"We're directly observing the paths that the radicals take, not those of water," Weisz said. "But given the radicals' similar properties to water as well as previous computer modeling results, we believe that those pathways are the same ones that water takes inward."

Such an approach to discovering the water channels is considered a proxy because it's based on the movement of the highly reactive radicals and not of the water itself.

The proxy, Weisz said, "is like leaving a trail of bread crumbs along a path in the forest. If someone is able to find the bread crumbs, they can retrace the path taken out of the forest."

The researchers were able to identify the many damaged residues because of the incredible accuracy, speed and sensitivity of Gross's mass spectrometry instrument. "With earlier instruments that were slower and less sensitive, it was harder to confidently identify large numbers of damaged sites," Weisz said. "The powerful capabilities of this instrument enabled us to obtain these results ."

"Cyanobacteria are the progenitors of chloroplasts in plants," Pakrasi said. "Photosystem II is conserved across all oxygenic photosynthetic organisms. We know for sure that nature devised this machine only once, then transferred it from cyanobacteria to algae and to plants."

###

The study was supported by: grant DE-FG02-99ER20350 from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, United States Department of Energy (DOE); DE-SC 0001035 from the Photosynthetic Antenna Research Center, an Energy Frontier Research Center funded by the U.S. DOE, Office of Basic Energy Sciences; and 2P41GM103422 from the National Institutes of Health.

Media Contact

Chuck Finder
chuck.finder@wustl.edu
412-996-5852

 @WUSTLnews

http://www.wustl.edu 

Chuck Finder | EurekAlert!

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>