Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water-powered reactions

29.06.2009
An international team, led by Shingo Nagano from the RIKEN SPring-8 Center in Harima and Hiroyasu Onaka from Toyama Prefectural University, has uncovered the vital role of water in the generation of the antitumor drug staurosporine (1).

The researchers mainly focus on the enzyme P450 StaP, which belongs to the cytochrome P450 enzyme family. These enzymes are involved in metabolic and biosynthetic reactions, including the activation and degradation of drugs in humans, and the synthesis of medically relevant natural products.

P450 StaP’s active site consists of a sulfur-bound iron atom enclosed in a large hydrocarbon ring called heme. It catalyzes the oxidation of a five-ring compound called chromopyrrolic acid (CPA) and facilitates the formation of an intramolecular carbon–carbon bond to generate a six-ring staurosporine precursor. This carbon–carbon bond formation is unusual for P450 enzymes, which typically insert an oxygen atom into bonds. The researchers demonstrated that water molecules mediate this carbon–carbon coupling.

Nagano and co-workers had previously revealed that strong interactions held CPA tightly in a binding pocket, modulating proton and electron transfer reactions between substrate and enzyme. However, they observed that those interactions kept the substrate away from the heme oxygen, impeding any direct contact, and thus proton transfer, between the two species.

In their latest work, they mutated the enzyme by replacing a residue positioned between the two water molecules with hydrocarbons, which significantly decreased its activity. They also substituted CPA with a chlorine-containing compound (CCA) and discovered that the chlorine atom prevented water molecules from approaching the heme. Further, they observed decreased activity in presence of CCA, highlighting the importance of water in the mechanism.

“CCA is very poor substrate but we had no idea why this happens,” says Nagano. Since his collaborator proposed that this water molecule was very likely to be a key player in this enzyme catalysis, they ran a detailed computational investigation. They found that two water molecules in the enzyme active site acted as a proton relay between CPA and the heme.

“Similar water-assisted proton transfer between heme and substrate is also found in horseradish peroxidase (HRP), another heme enzyme,” explains Nagano. “The natural substrate-bound HRP has a water molecule close to the substrate and heme as we have observed in CPA-bound P450 StaP.” The researchers’ ultimate goal is to transpose this carbon–carbon coupling to other P450 enzymes and generate new staurosporine-like therapeutic agents.

Reference

1. Wang, Y., Chen, H., Makino, M., Shiro, Y., Nagano, S., Asamizu, S., Onaka, H. & Shaik, S. Theoretical and experimental studies of the conversion of chromopyrrolic acid to an antitumor derivative by cytochrome P450 StaP: the catalytic role of water molecules. Journal of the American Chemical Society 131, 6748–6762 (2009).

The corresponding author for this highlight is based at the RIKEN Photon Science Research Division, Biometal Science Laboratory

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/731/
http://www.researchsea.com

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>