Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water forms 'spine of hydration' around DNA, group finds

26.05.2017

Water is the Earth's most abundant natural resource, but it's also something of a mystery due to its unique solvation characteristics -- that is, how things dissolve in it.

"It's uniquely adapted to biology, and vice versa," said Poul Petersen, assistant professor of chemistry and chemical biology at Cornell University. "It's super-flexible. It dissipates energy and mediates interactions, and that's becoming more recognized in biological systems."


This is an illustration of what chiral nonlinear spectroscopy reveals: that DNA is surrounded by a chiral water super-structure, forming a 'spine of hydration.'

Credit: Poul Petersen, Cornell University

How water relates to and interacts with those systems -- like DNA, the building block of all living things -- is of critical importance, and Petersen's group has used a relatively new form of spectroscopy to observe a previously unknown characteristic of water.

"DNA's chiral spine of hydration," published May 24 in the American Chemical Society journal Central Science, reports the first observation of a chiral water superstructure surrounding a biomolecule. In this case, the water structure follows the iconic helical structure of DNA, which itself is chiral, meaning it is not superimposable on its mirror image. Chirality is a key factor in biology, because most biomolecules and pharmaceuticals are chiral.

"If you want to understand reactivity and biology, then it's not just water on its own," Petersen said. "You want to understand water around stuff, and how it interacts with the stuff. And particularly with biology, you want to understand how it behaves around biological material -- like protein and DNA."

Water plays a major role in DNA's structure and function, and its hydration shell has been the subject of much study. Molecular dynamics simulations have shown a broad range of behaviors of the water structure in DNA's minor groove, the area where the backbones of the helical strand are close together.

The group's work employed chiral sum frequency generation spectroscopy (SFG), a technique Petersen detailed in a 2015 paper in the Journal of Physical Chemistry. SFG is a nonlinear optical method in which two photon beams -- one infrared and one visible -- interact with the sample, producing an SFG beam containing the sum of the two beams' frequencies, or energies. In this case, the sample was a strand of DNA linked to a silicon-coated prism.

More manipulation of the beams and calculation proved the existence of a chiral water superstructure surrounding DNA.

In addition to the novelty of observing a chiral water structure template by a biomolecule, chiral SFG provides a direct way to examine water in biology.

"The techniques we have developed provide a new avenue to study DNA hydration, as well as other supramolecular chiral structures," Petersen said.

The group admits that their finding's biological relevance is unclear, but Petersen thinks the ability to directly examine water and its behavior within biological systems is important.

"Certainly, chemical engineers who are designing biomimetic systems and looking at biology and trying to find applications such as water filtration would care about this," he said.

Another application, Petersen said, could be in creating better anti-biofouling materials, which are resistant to the accumulation of microorganisms, algae and the like on wetted surfaces.

###

Collaborators included M. Luke McDermott; Heather Vanselous, a doctoral student in chemistry and chemical biology and a member of the Petersen Group; and Steven Corcelli, professor of chemistry and biochemistry at the University of Notre Dame.

This work was supported by grants from the National Science Foundation and the Arnold and Mable Beckman Foundation, and made use of the Cornell Center for Materials Research, an NSF Materials Research Science and Engineering Center.

Media Contact

Daryl Lovell
dal296@cornell.edu
607-592-3925

 @cornell

http://pressoffice.cornell.edu 

Daryl Lovell | EurekAlert!

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>