Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming climate could speed forest regrowth in eastern US

17.04.2018

Faster takeover by trees could boost carbon sequestration on abandoned land

Climate change could speed the natural regrowth of forests on undeveloped or abandoned land in the eastern U.S., according to a new study.


Researchers grew tree seedlings in plots with varying soil fertility, and with and without different mixes of early succession plants such as broomsedge and goldenrod.

Credit: Photo by Jason Fridley, Syracuse University.

If left to nature's own devices, a field of weeds and grasses over time will be replaced by saplings, young trees and eventually mature forest. Earlier research has shown that this succession from field to forest can happen decades sooner in the southeastern U.S. than in the Northeast. But it wasn't obvious why, especially since northern and southern fields are first colonized by many of the same tree species.

Now, a study published Proceedings of the National Academy of Sciences points to temperature as the major factor influencing the pace at which trees take over.

The results suggest that as temperatures rise, faster-growing forests on lands that humans have left idle could play a bigger role in removing carbon dioxide from the atmosphere, say researchers from Duke University and Syracuse University.

The team conducted the experiment at six sites up and down the eastern U.S., from New York to Florida.

At each site, the researchers followed the early lives of four tree species that are common early arrivals in abandoned farm fields -- loblolly pine, black cherry, red cedar and sweetgum.

Using plastic wading pools as planters, they grew the trees from seed in plots with varying soil fertility, and with and without different mixes of early succession plants such as broomsedge and goldenrod.

In each plot the researchers also measured light availability, soil moisture, nutrients and other variables known to affect plant growth.

After two years, the tree seedlings grew faster at southern sites. But surprisingly, other plant species grew slower.

One possibility is that soil fertility is the main factor, said co-author Jason Fridley, associate professor of biology at Syracuse University. The thinking was that poorer southern soils produce a sparser carpet of weeds and grasses. This might in turn shade emerging tree seedlings to a lesser extent than in the north, and make it easier for them to grow up through the gaps.

But statistical analyses weighing the relative effects of soil fertility and other factors revealed that temperature was the biggest driver of tree seedling growth. Part of the reason is that milder winters and earlier springs mean a longer growing season, said Justin Wright, associate professor of biology at Duke.

The results are important because average annual temperatures in the eastern U.S. are predicted to warm by five to nine degrees Fahrenheit by the end of the century.

Rising temperatures could also bring more droughts, Wright cautions. But in the absence of drought stress, even minor warming will likely accelerate the transition from field to forest.

This also means that northeastern meadows that normally persist for decades may become shorter-lived, Fridley said. The forests that replace them probably won't mirror native forests, he added -- especially if cold-intolerant trees that are common colonizers of southern fields find it increasingly easy to survive and take hold in the north.

"Certainly in the next 100 years and maybe in the next 50 years, fields will likely transition much faster to woody vegetation," Fridley said. "The double whammy is the trees themselves are going to change too."

But young, rapidly growing trees can potentially absorb more carbon dioxide than weeds and grasses as they convert the heat-trapping gas to the sugar they need to grow. That means that undeveloped or abandoned land, if left undisturbed, could soon play a bigger role in offsetting human sources of carbon dioxide emissions.

"Faster-growing forests on once-cultivated land aren't going to solve the climate change problem," Wright said. "But one of the reasons we care about these abandoned sites is they have really high potential for carbon sequestration."

###

This research was supported by the U.S. National Science Foundation (DEB 1119743, DEB 1119715).

CITATION: "Temperature Accelerates the Rate Fields Become Forests," Jason Fridley and Justin Wright. Proceedings of the National Academy of Sciences, April 16, 2018. DOI: 10.1073/pnas.1716665115

Robin Ann Smith | EurekAlert!
Further information:
https://today.duke.edu/2018/04/warming-climate-could-speed-forest-regrowth-eastern-us
http://dx.doi.org/10.1073/pnas.1716665115

Further reports about: Warming climate dioxide fertility soil fertility tree species

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>