Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming climate could speed forest regrowth in eastern US

17.04.2018

Faster takeover by trees could boost carbon sequestration on abandoned land

Climate change could speed the natural regrowth of forests on undeveloped or abandoned land in the eastern U.S., according to a new study.


Researchers grew tree seedlings in plots with varying soil fertility, and with and without different mixes of early succession plants such as broomsedge and goldenrod.

Credit: Photo by Jason Fridley, Syracuse University.

If left to nature's own devices, a field of weeds and grasses over time will be replaced by saplings, young trees and eventually mature forest. Earlier research has shown that this succession from field to forest can happen decades sooner in the southeastern U.S. than in the Northeast. But it wasn't obvious why, especially since northern and southern fields are first colonized by many of the same tree species.

Now, a study published Proceedings of the National Academy of Sciences points to temperature as the major factor influencing the pace at which trees take over.

The results suggest that as temperatures rise, faster-growing forests on lands that humans have left idle could play a bigger role in removing carbon dioxide from the atmosphere, say researchers from Duke University and Syracuse University.

The team conducted the experiment at six sites up and down the eastern U.S., from New York to Florida.

At each site, the researchers followed the early lives of four tree species that are common early arrivals in abandoned farm fields -- loblolly pine, black cherry, red cedar and sweetgum.

Using plastic wading pools as planters, they grew the trees from seed in plots with varying soil fertility, and with and without different mixes of early succession plants such as broomsedge and goldenrod.

In each plot the researchers also measured light availability, soil moisture, nutrients and other variables known to affect plant growth.

After two years, the tree seedlings grew faster at southern sites. But surprisingly, other plant species grew slower.

One possibility is that soil fertility is the main factor, said co-author Jason Fridley, associate professor of biology at Syracuse University. The thinking was that poorer southern soils produce a sparser carpet of weeds and grasses. This might in turn shade emerging tree seedlings to a lesser extent than in the north, and make it easier for them to grow up through the gaps.

But statistical analyses weighing the relative effects of soil fertility and other factors revealed that temperature was the biggest driver of tree seedling growth. Part of the reason is that milder winters and earlier springs mean a longer growing season, said Justin Wright, associate professor of biology at Duke.

The results are important because average annual temperatures in the eastern U.S. are predicted to warm by five to nine degrees Fahrenheit by the end of the century.

Rising temperatures could also bring more droughts, Wright cautions. But in the absence of drought stress, even minor warming will likely accelerate the transition from field to forest.

This also means that northeastern meadows that normally persist for decades may become shorter-lived, Fridley said. The forests that replace them probably won't mirror native forests, he added -- especially if cold-intolerant trees that are common colonizers of southern fields find it increasingly easy to survive and take hold in the north.

"Certainly in the next 100 years and maybe in the next 50 years, fields will likely transition much faster to woody vegetation," Fridley said. "The double whammy is the trees themselves are going to change too."

But young, rapidly growing trees can potentially absorb more carbon dioxide than weeds and grasses as they convert the heat-trapping gas to the sugar they need to grow. That means that undeveloped or abandoned land, if left undisturbed, could soon play a bigger role in offsetting human sources of carbon dioxide emissions.

"Faster-growing forests on once-cultivated land aren't going to solve the climate change problem," Wright said. "But one of the reasons we care about these abandoned sites is they have really high potential for carbon sequestration."

###

This research was supported by the U.S. National Science Foundation (DEB 1119743, DEB 1119715).

CITATION: "Temperature Accelerates the Rate Fields Become Forests," Jason Fridley and Justin Wright. Proceedings of the National Academy of Sciences, April 16, 2018. DOI: 10.1073/pnas.1716665115

Robin Ann Smith | EurekAlert!
Further information:
https://today.duke.edu/2018/04/warming-climate-could-speed-forest-regrowth-eastern-us
http://dx.doi.org/10.1073/pnas.1716665115

Further reports about: Warming climate dioxide fertility soil fertility tree species

More articles from Life Sciences:

nachricht Hopkins researchers ID neurotransmitter that helps cancers progress
25.04.2019 | Johns Hopkins Medicine

nachricht Trigger region found for absence epileptic seizures
25.04.2019 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>