Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer Climate Could Stifle Carbon Uptake by Trees

08.01.2010
Contrary to conventional belief, as the climate warms and growing seasons lengthen subalpine forests are likely to soak up less carbon dioxide, according to a new University of Colorado at Boulder study.

As a result, more of the greenhouse gas will be left to concentrate in the atmosphere.

"Our findings contradict studies of other ecosystems that conclude longer growing seasons actually increase plant carbon uptake," said Jia Hu, who conducted the research as a graduate student in CU-Boulder's ecology and evolutionary biology department in conjunction with the university's Cooperative Institute for Research in Environmental Sciences, or CIRES.

The study will be published in the February edition of the journal Global Change Biology.

Working with ecology and evolutionary biology professor and CIRES Fellow Russell Monson, Hu found that while smaller spring snowpack tended to advance the onset of spring and extend the growing season, it also reduced the amount of water available to forests later in the summer and fall. The water-stressed trees were then less effective in converting CO2 into biomass. Summer rains were unable to make up the difference, Hu said.

"Snow is much more effective than rain in delivering water to these forests," said Monson. "If a warmer climate brings more rain, this won't offset the carbon uptake potential being lost due to declining snowpacks."

Drier trees also are more susceptible to beetle infestations and wildfires, Monson said.

The researchers found that even as late in the season as September and October, 60 percent of the water in stems and needles collected from subalpine trees along Colorado's Front Range could be traced back to spring snowmelt. They were able to distinguish between spring snow and summer rain in plant matter by analyzing slight variations in hydrogen and oxygen atoms in the water molecules.

The results suggest subalpine trees like lodgepole pine, subalpine fir and Englemann spruce depend largely on snowmelt, not just at the beginning of the summer, but throughout the growing season, according to the researchers.

"As snowmelt in these high-elevation forests is predicted to decline, the rate of carbon uptake will likely follow suit," said Hu.

Subalpine forests currently make up an estimated 70 percent of the western United States' carbon sink, or storage area. Their geographic range includes much of the Rocky Mountains, Sierra Nevada and high-elevation areas of the Pacific Northwest.

Study co-authors included David Moore of King's College London and Sean Burns of the National Center for Atmospheric Research and CU-Boulder.

CIRES is a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration. For more information about CIRES visit cires.colorado.edu.

Contact

Jia Hu, 303-492-5796
Jia.Hu@colorado.edu
Russell Monson, 303-492-6319
Monsonr@colorado.edu
Morgan Heim, 303-492-6289
morgan.heim@cires.colorado.edu

Jia Hu | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Life Sciences:

nachricht Breakthrough in designing a better Salmonella vaccine
25.09.2018 | University of California - Davis

nachricht Proof of Concept: Gene therapy for mitochondrial diseases
25.09.2018 | Max-Planck-Institut für Biologie des Alterns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Small modulator for big data

25.09.2018 | Information Technology

NASA's Terra Satellite glares at the 37-mile wide eye of Super Typhoon Trami

25.09.2018 | Earth Sciences

Rice U. study sheds light on -- and through -- 2D materials

25.09.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>