Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warm on top, cold below: unexpected greenhouse gas effect in lakes

09.09.2019

A research team led by the University of Basel and the Université de Montréal examined how the ongoing climate warming affects the “behavior” of lakes. The researchers found out why, in near-bottom waters, lakes may even cool down despite warming at the surface, and what the consequences are for the production and emission of greenhouse gases. The results of the study were published in the most recent edition of the journal Limnology and Oceanography Letters.

Lakes play an important role in the global carbon cycle, acting as large natural bioreactors. The temperature of a lake represents an important constraint on the amount of carbon dioxide and methane it emits into the atmosphere.


Effects of climate change on the water temperature, water transparency, density stratification and oxygen content in lakes.

University of Basel

It was generally assumed that global warming stimulates microbial respiratory processes and the production of these greenhouse gases, while at the same time reducing the carbon storage in lake sediments. An international research team has now examined these interactions more closely and discovered unexpected effects.

The research project not only targeted the direct effects of global warming, but also the indirect ones. The main focus of the investigations was the water temperature and greenhouse gas production in the deeper parts of the lakes.

“We don’t want to question the fundamentals of thermodynamics. There is no doubt that the rates of respiratory metabolic processes in lakes are generally higher at increased water temperatures,” explains Professor Moritz Lehmann from the Department of Environmental Sciences at the University of Basel. “However, climate change will not cause every lake to warm up everywhere.”

Warming near the surface, cooling near the bottom

Lakes worldwide are warming at the surface. However, they are also losing transparency due to increased algae production and enhanced turbidity of the lake water.

“The surface-water warming and the loss of transparency have the effect that more heat is trapped in the upper layers of the lakes, leaving the deeper waters thermally isolated,” says lead author Dr. Maciej Bartosiewicz from the Department of Environmental Sciences at the University of Basel. “Under some circumstances, this can even lead to the cooling of water masses near the bottom of the lake.”

The subtle cooling slows down respiratory decay processes and carbon dioxide production in the lakes, increasing carbon burial within the sediments. Model simulations suggest that the observed effects are most pertinent to relatively small and shallow lakes, which make up approximately half of the global lake surface.

Less carbon dioxide, more methane

The increased differential warming in lakes has yet another effect: the pronounced thermal stratification entails that the deeper water layers do barely mix and are poorly ventilated, which can lead to prolonged anoxia. Under these oxygen-free conditions, methane production by anaerobic microorganisms is enhanced.

“All in all, global warming increases the greenhouse gas potential of lakes, as expected. However, this has less to do with the warming directly, and more to do with increased oxygen depletion at the bottom of these lakes,” concludes Bartosiewicz.

The study was conducted in collaboration with the Université de Montreal and the Eau Terre Environnement Research Centre at the Institut National de la Recherche Scientifique in Quebec.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Moritz Lehmann, Dr. Maciej Bartosiewicz, University of Basel, Department of Environmental Sciences, phone +41 61 207 36 16, email: moritz.lehmann@unibas.ch

Originalpublikation:

Bartosiewicz, M., A. Przytulska, J.-F. Lapierre, I. Laurion, M. F. Lehmann and R. Maranger
Hot tops, cold bottoms: Synergistic climate warming and shielding effects increase carbon burial in lakes.
Limnology and Oceanography Letters (2019), doi: 10.1002/lol2.10117

Weitere Informationen:

https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lol2.10117

Iris Mickein | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics
13.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Small RNAs link immune system and brain cells
13.11.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnets for the second dimension

12.11.2019 | Machine Engineering

New efficiency world record for organic solar modules

12.11.2019 | Power and Electrical Engineering

Non-volatile control of magnetic anisotropy through change of electric polarization

12.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>