Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting better visualization of joint cartilage through cationic CT contrast agents

03.09.2009
In its quest to find new strategies to treat osteoarthritis and other diseases, a Boston University-led research team has reported finding a new computer tomography contrast agent for visualizing the special distributions of glycosaminoglycans (GAGs) – the anionic sugars that account for the strength of joint cartilage.

Assessing the local variations in GAGs are of significant interest for the study of cartilage biology and for the diagnosis of cartilage disease like osteoarthritis, which afflicts more than 27 million in people in the United States

In their research paper, "Effect of Contrast Agent Change on Visualization of Articular Cartilage Using Computer Tomography: Exploiting Electrostatic Interactions for Improved Sensitivity," just published on line in the Journal of the American Chemical Society, they describe new contrast agents that selectively bind to the GAGs in articular cartilage.

Articular or joint cartilage is the smooth hydrated tissue in the ends of bones in load-bearing joints, such as knees, hips and shoulders. The loss of GAGs from these joints is the hallmark of osteoarthritis, a degenerative joint disease in which wear or trauma results in damage to the cartilage surface.

To better see the differentiation between healthy and unhealthy cartilage, contrast agents provide the visual tool to assess GAG content. However, the current contrast agents used with computer tomography or magnetic resonance imaging (MRI) rely on limited diffusion of the anionic or negative ion-charged contrast agents into the target tissue, the study noted.

So researchers hypothesized that cationic contrast agents would be electrostatically attracted to anionic GAGs to provide a more sensitive technique for imaging cartilage. And they focused on using the more widely accessible CT equipment because it can image cartilage and bone simultaneously, enable rapid three-dimensional reconstruction of the tissue and achieve higher spatial resolution over shorter acquisition times compared to MRI systems.

The team synthesized three cationic or positive ion-charged iodine-based X-ray contrast agents. Using the femur of a rabbit, they reported gaining better and more specific images for the cartilage tissue than with current negative ion-charged contrast agents.

"Compared to commercially available contrast agents under the same experimental conditions, these new cationic agents are three times more sensitive for imaging cartilage," said Mark W. Grinstaff, Boston University Professor of Chemistry and Biomedical Engineering who led the team with Brian D. Snyder, MD, Ph.D. an orthopedic surgeon at Children's Hospital and Harvard Medical School.

Snyder noted that the ability to acquire information about localized GAG content, morphology and cartilage thickness on tissue samples will, in the future, aid in the diagnosis and treatment of osteoarthritis.

And while the data presented a compelling case for continued development of cationic CT contrast agents, the research team cautioned that the suitability for in vivo applications remains to be determined, adding that toxicity levels and radiation dosage will be the focus of future studies.

"However, the ability to characterize ex vivo cartilage samples is clearly evident," the study concludes. "Currently obtaining data about the spatial distribution of biochemical components in tissue samples is largely accomplished using histology, which is destructive and time consuming, and thus the use of contrast agents in conjunction with CT imaging will result in readily available, nondestructive alternative to histology."

In addition to Grinstaff and Snyder, the study's other Boston University authors are Neel S. Joshi, a postdoctoral student in the Department of Chemistry and Prashant N. Bansal, and Rachel C. Stewart, both graduate students in the Department of Biomedical Engineering.

The study was funded by the Coulter Foundation.

Ronald Rosenberg | EurekAlert!
Further information:
http://www.bu.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>