Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualization of DNA-Synthesis in vivo

13.12.2011
Researchers of the University of Zurich have discovered a new substance for labelling and visualization of DNA synthesis in whole animals.

Applications for this technique include identifying the sites of virus infections and cancer growth, due to the abundance of DNA replication in these tissues. This approach should therefore lead to new strategies in drug development.


F-ara-Edu injected into Zebrafish eggs
Picture: UZH

Interactions of biological macromolecules are the central bases of living systems. Biological macromolecules are synthesized in living cells by linking many small molecules together. Naturally occurring macromolecules include genetic materials (DNA) and proteins. A detailed understanding of the synthesis of these macromolecules in whole animals is a basic requirement for understanding biological systems, and for the development of new therapeutic strategies.

To visualize the synthesis of biomolecules in living organisms, artificial small molecules can be added to and incorporated by the cell’s own biosynthetic machinery. Subsequently, the modified biomolecules containing the artificial units can be selectively labelled with fluorescent substances. Until now, this approach had one major limitation: the substances used for labelling were toxic and caused cell death.

Anne Neef, a PhD student from the Institute of Organic Chemistry at the University of Zurich, has developed a new substance that can replace the natural nucleoside thymidine in DNA biosynthesis. This fluorinated nucleoside called “F-ara-Edu” labels DNA with little or no impact on genome function in living cells and even whole animals. “F-ara-Edu” is less toxic than previously reported compounds used for DNA labelling and it can be detected with greater sensitivity. “F-ara-Edu” is therefore ideally suited for experiments aimed at “birth dating” DNA synthesis in vivo. “As a demonstration of this, F-ara-Edu was injected into Zebrafish eggs immediately after fertilization. Following development and hatching of the fish, the very first cells undergoing differentiation in embryonic development could be identified”, explains Anne’s research advisor, Prof. Nathan Luedtke. “By visualizing new DNA synthesis in whole animals, the sites of virus infection and cancerous growth can be identified due to the abundance of DNA replication in these tissues”, adds Prof. Luedtke. This approach should therefore lead to new strategies in drug development.

Literature:
Anne Brigitte Neef, Nathan William Luedtke. Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proceedings of the National Academy of Sciences of the United States of America. PNAS. November 29, 2011. doi:10.1073/pnas.1101126108

Nathalie Huber | idw
Further information:
http://www.mediadesk.uzh.ch

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>