Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualization of DNA-Synthesis in vivo

13.12.2011
Researchers of the University of Zurich have discovered a new substance for labelling and visualization of DNA synthesis in whole animals.

Applications for this technique include identifying the sites of virus infections and cancer growth, due to the abundance of DNA replication in these tissues. This approach should therefore lead to new strategies in drug development.


F-ara-Edu injected into Zebrafish eggs
Picture: UZH

Interactions of biological macromolecules are the central bases of living systems. Biological macromolecules are synthesized in living cells by linking many small molecules together. Naturally occurring macromolecules include genetic materials (DNA) and proteins. A detailed understanding of the synthesis of these macromolecules in whole animals is a basic requirement for understanding biological systems, and for the development of new therapeutic strategies.

To visualize the synthesis of biomolecules in living organisms, artificial small molecules can be added to and incorporated by the cell’s own biosynthetic machinery. Subsequently, the modified biomolecules containing the artificial units can be selectively labelled with fluorescent substances. Until now, this approach had one major limitation: the substances used for labelling were toxic and caused cell death.

Anne Neef, a PhD student from the Institute of Organic Chemistry at the University of Zurich, has developed a new substance that can replace the natural nucleoside thymidine in DNA biosynthesis. This fluorinated nucleoside called “F-ara-Edu” labels DNA with little or no impact on genome function in living cells and even whole animals. “F-ara-Edu” is less toxic than previously reported compounds used for DNA labelling and it can be detected with greater sensitivity. “F-ara-Edu” is therefore ideally suited for experiments aimed at “birth dating” DNA synthesis in vivo. “As a demonstration of this, F-ara-Edu was injected into Zebrafish eggs immediately after fertilization. Following development and hatching of the fish, the very first cells undergoing differentiation in embryonic development could be identified”, explains Anne’s research advisor, Prof. Nathan Luedtke. “By visualizing new DNA synthesis in whole animals, the sites of virus infection and cancerous growth can be identified due to the abundance of DNA replication in these tissues”, adds Prof. Luedtke. This approach should therefore lead to new strategies in drug development.

Literature:
Anne Brigitte Neef, Nathan William Luedtke. Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proceedings of the National Academy of Sciences of the United States of America. PNAS. November 29, 2011. doi:10.1073/pnas.1101126108

Nathalie Huber | idw
Further information:
http://www.mediadesk.uzh.ch

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>