Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses under the Microscope

14.09.2018

Human herpesviruses such as HHV-6 can remain dormant in cells for many years without being noticed. When reactivated, they can cause serious clinical conditions. Researchers from Würzburg have now found a way of differentiating between active and inactive viruses.

Human herpesvirus 6 (HHV-6) infects almost all of the human population, but only very few will show any symptoms during their lifetime: HHV-6 is one of the most widespread viruses among the population. Between 95 and 100 percent of healthy adults have antibodies to the virus which means that they have been infected at some point in the past.


FISH images from kidney biopsy of the DRESS patient showing HHV-6 encoded sncRNA-U14 (green). DNA is counter stained with DAPI (blue).

Photo: Team Prusty

The virus hides in the genomic DNA

There are two types of the virus: HHV-6A and HHV-6B. HHV-6B primarily infects in infancy as sixth disease, whereas HHV-6A infections usually remain asymptomatic. After primary infection, the virus establishes lifelong latency by integrating with the cellular DNA.

The infection is generally harmless. Under certain circumstances, however, the virus can be reactivated – for example, after chlamydia infection, organ transplantation, immunodeficiency or when taking specific drugs.

Trigger of numerous diseases

While HHV-6 was long believed to have no negative impact on human health, scientists today increasingly suspect the virus of causing various diseases such as multiple sclerosis or chronic fatigue syndrome. Recent studies even suggest that HHV-6 might play a role in the pathogenesis of several diseases of the central nervous system such as schizophrenia, bipolar disorder, depression or Alzheimer's.

Dr. Bhupesh Prusty is responsible for these new insights. The scientist is a team leader at the Department of Microbiology of the University of Würzburg. Prusty has recently discovered a method which for the first time allows reactivation of human herpesvirus to be detected at an early stage.

MicroRNA molecules as markers

"Betaherpesviruses like human herpesvirus 6A, 6B and 7 integrate into subtelomeric ends of human chromosomes and acquire latency. This makes it difficult to recognize the early phase of viral activation based on an analysis of the viral DNA," Prusty points out the problem. Together with his team, the virologist has now discovered an alternative approach which could be a suitable biomarker for HHV-6 studies.

"We have identified several viral microRNA molecules which are produced both during active infection and viral activation," Prusty explains. MicroRNAs directly influence cell metabolism. The RNA assures the flow of genetic information from nuclear DNA into the cell where it is "translated" to proteins. The microRNAs have a regulatory function in this process. They can dock to RNA molecules and prevent them from being translated to proteins or initiate the degradation of RNA molecules. Prusty is certain that the detection of these viral microRNAs can serve as an ideal biomarker under clinical conditions.

Biopsies confirm hypothesis

The scientists were able to confirm their hypothesis by studying biopsies of a young woman who had died tragically as a result of drug-induced hypersensitivity syndrome (DRESS), a usually life-threatening condition which results in rash, organ failure and blood count anomalies.

Scientists have suspected for some time that these cases might have been caused by drugs that activate viruses but were unable to provide evidence for this theory. Prusty and his colleagues have now detected traces of HHV-6 DNA in the blood of the deceased – however different concentrations at various stages of the disease. At the time of death, for example, the viral load was very low while the opposite was true for the concentration of microRNA: "All biopsy samples showed a positive signal for this special type of RNA," Bhupesh Prusty says. This indicates the potential effectiveness of RNA as a viral biomarker for the detection of active viral infection in the body.

With this finding, Prusty and his team have demonstrated for the first time in experiments that some of the prescription drugs have the potential to reactivate HHV-6 with life-threatening consequences. Early detection of viral reactivation may therefore be helpful for further clinical interventions.

Wissenschaftliche Ansprechpartner:

Dr. Bhupesh Prusty, Institute for Virology and Immunobiology
T: +49 931 31-88067, bhupesh.prusty@uni-wuerzburg.de

Originalpublikation:

HHV-6 encoded small non-coding RNAs define an intermediate and early stage in viral reactivation. Bhupesh K. Prusty, Nitish Gulve, Suvagata Roy Chowdhury, Michael Schuster, Sebastian Strempel, Vincent Descamps and Thomas Rudel. npj Genomic Medicine (2018); doi:10.1038/s41525-018-0064-5

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>