Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017

Viruses propagate by infecting a host cell and reproducing inside. This not only affects humans and animals, but bacteria as well. This type of virus is called bacteriophage. They carry so called auxiliary metabolic genes in their genome, which are responsible for producing certain proteins that give the virus an advantage. Researchers at the University of Kaiserslautern and the Ruhr University Bochum have analysed the structure of such a protein more closely. It appears to stimulate the photosynthesis of host bacteria. The study has now been published in the prestigious journal ‘The Journal of Biological Chemistry’.

When viruses infect a cell, they use it as a factory to replicate themselves. “They abuse the bacteria to produce new virus proteins,” says microbiology professor Dr Nicole Frankenberg-Dinkel, from the TU Kaiserslautern. “This creates new viruses that are assembled in the host cell.”


The association between the virus protein and bacterial pigment is incredibly stable. Furthermore, the complex is highly fluorescent.

Credits: AG Frankenberg-Dinkel


Professor Dr Nicole Frankenberg-Dinkel

Credits: University of Kaiserslautern

Bacteriophages also carry what are known as auxiliary metabolic genes in their DNA. “These are responsible for producing various proteins. They appear to give the virus an advantage, for instance, by stimulating the host cell`s metabolism,” adds professor Dr Eckhard Hofmann, who leads the protein crystallography group at the Ruhr University Bochum.

In this study, the researchers concentrated on bacteriophages that infect blue-green algae, also known as cyanobacteria. Their work focused on a certain protein, whose structure they analysed more closely. “Our findings indicate that it plays an important role in the assembly of light-harvesting complexes in host bacteria,” explains Frankenberg-Dinkel.

These complexes allow the microorganisms to harvest the energy of sunlight. Just like plants, they conduct photosynthesis – using light energy to convert carbon dioxide and water into carbohydrates and oxygen. “These light-harvesting complexes consist of proteins and coloured pigments,” the Kaiserslautern professor continues. In the case of blue-green algae, a pink coloured pigment (phycoerythrobilin) is particularly important.

Frankenberg-Dinkel and Hofmann’s team has proved that the virus protein (‘phycobiliprotein lyase CpeT’) binds the coloured pigment. Moreover, the team determined that the association between the virus protein and bacterial pigment is incredibly stable. “By looking under the microscope, we have also seen that the complex is highly fluorescent,” Frankenberg-Dinkel states.

The results of the study show that the viral protein stimulates the assembly of light-harvesting complexes. “This gives the virus an evolutionary advantage,” Frankenberg-Dinkel says. “They ensure a high rate of photosynthesis in the bacteria during infection, meaning sufficient energy is available for the production of new viruses.”

This mechanism is widespread among viruses that infect blue-green algae. However, further studies will have to clarify why the genome of the viruses only contains certain auxiliary metabolic genes. Bacteriophages are among the most prevalent biological entities on earth. They are not considered living creatures. Scientists have discovered many new bacteriophages in recent years. Researching them will provide important clues to their biological function.

The study has now been published in the scientific journal ‘The Journal of Biological Chemistry’ as the title article: ‘Distinct Features of Cyanophage-encoded T-type Phycobiliprotein Lyase CpeT’
DOI: 10.1074/jbc.M116.769703

Press enquiries:
Prof Dr Nicole Frankenberg-Dinkel
University of Kaiserslautern
Email: nfranken[at]bio.uni-kl.de
Tel.: +49 (0)631 205-2353

Prof Dr Eckhard Hofmann
Ruhr University Bochum
Email: Eckhard.Hofmann[at]bph.rub.de
Tel.: +49 (0)234 32-24463

Katrin Müller | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>