Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017

Viruses propagate by infecting a host cell and reproducing inside. This not only affects humans and animals, but bacteria as well. This type of virus is called bacteriophage. They carry so called auxiliary metabolic genes in their genome, which are responsible for producing certain proteins that give the virus an advantage. Researchers at the University of Kaiserslautern and the Ruhr University Bochum have analysed the structure of such a protein more closely. It appears to stimulate the photosynthesis of host bacteria. The study has now been published in the prestigious journal ‘The Journal of Biological Chemistry’.

When viruses infect a cell, they use it as a factory to replicate themselves. “They abuse the bacteria to produce new virus proteins,” says microbiology professor Dr Nicole Frankenberg-Dinkel, from the TU Kaiserslautern. “This creates new viruses that are assembled in the host cell.”


The association between the virus protein and bacterial pigment is incredibly stable. Furthermore, the complex is highly fluorescent.

Credits: AG Frankenberg-Dinkel


Professor Dr Nicole Frankenberg-Dinkel

Credits: University of Kaiserslautern

Bacteriophages also carry what are known as auxiliary metabolic genes in their DNA. “These are responsible for producing various proteins. They appear to give the virus an advantage, for instance, by stimulating the host cell`s metabolism,” adds professor Dr Eckhard Hofmann, who leads the protein crystallography group at the Ruhr University Bochum.

In this study, the researchers concentrated on bacteriophages that infect blue-green algae, also known as cyanobacteria. Their work focused on a certain protein, whose structure they analysed more closely. “Our findings indicate that it plays an important role in the assembly of light-harvesting complexes in host bacteria,” explains Frankenberg-Dinkel.

These complexes allow the microorganisms to harvest the energy of sunlight. Just like plants, they conduct photosynthesis – using light energy to convert carbon dioxide and water into carbohydrates and oxygen. “These light-harvesting complexes consist of proteins and coloured pigments,” the Kaiserslautern professor continues. In the case of blue-green algae, a pink coloured pigment (phycoerythrobilin) is particularly important.

Frankenberg-Dinkel and Hofmann’s team has proved that the virus protein (‘phycobiliprotein lyase CpeT’) binds the coloured pigment. Moreover, the team determined that the association between the virus protein and bacterial pigment is incredibly stable. “By looking under the microscope, we have also seen that the complex is highly fluorescent,” Frankenberg-Dinkel states.

The results of the study show that the viral protein stimulates the assembly of light-harvesting complexes. “This gives the virus an evolutionary advantage,” Frankenberg-Dinkel says. “They ensure a high rate of photosynthesis in the bacteria during infection, meaning sufficient energy is available for the production of new viruses.”

This mechanism is widespread among viruses that infect blue-green algae. However, further studies will have to clarify why the genome of the viruses only contains certain auxiliary metabolic genes. Bacteriophages are among the most prevalent biological entities on earth. They are not considered living creatures. Scientists have discovered many new bacteriophages in recent years. Researching them will provide important clues to their biological function.

The study has now been published in the scientific journal ‘The Journal of Biological Chemistry’ as the title article: ‘Distinct Features of Cyanophage-encoded T-type Phycobiliprotein Lyase CpeT’
DOI: 10.1074/jbc.M116.769703

Press enquiries:
Prof Dr Nicole Frankenberg-Dinkel
University of Kaiserslautern
Email: nfranken[at]bio.uni-kl.de
Tel.: +49 (0)631 205-2353

Prof Dr Eckhard Hofmann
Ruhr University Bochum
Email: Eckhard.Hofmann[at]bph.rub.de
Tel.: +49 (0)234 32-24463

Katrin Müller | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>