Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses cause bacteria to produce pink pigments

05.04.2016

Study by the University of Kaiserslautern

Plants use certain colour pigments in order to convert light into energy by way of photosynthesis. They allow plants to gather light energy. This also works in a similar way for microbes, for instance cyanobacteria.


Viruses from the ocean carry the genetic information for the turnover of the green pigment biliverdin to the pink pigment phycoerythrobilin.

The fact that a very large number of viruses are able to contribute towards pigment production has now been demonstrated by biologists from the University of Kaiserslautern with a colleague from Israel. The viruses introduce genetic material into the bacteria which then allows them to produce the pink-coloured pigments. The study has now been published in the renowned scientific journal ‘Environmental Microbiology’.

Cyanobacteria (also known as blue-green algae) and other oceanic bacteria are able to convert carbon dioxide and water into carbohydrates and oxygen with the help of sunlight, just like plants. “They use light-harvesting complexes in order to capture the energy from the light,” says microbiology Professor Nicole Frankenberg-Dinkel from the University of Kaiserslautern.

“These consist of proteins and colour pigments.” The latter are also responsible for the characteristic colouration. In the case of plants, for example, this is the green pigment ‘chlorophyll’, in cyanobacteria this is the blue pigment ‘phycocyanobilin’ and the pink pigment ‘phycoerythrobilin’.

“The synthesis of these pigments is already well understood,” the microbiologist adds. “So far researchers have only been able to demonstrate their presence in organisms which release oxygen through the process of photosynthesis.” In addition to this form of conventional photosynthesis performed by plants and cyanobacteria, there are also other variants that do not release any oxygen.

The biologists at Kaiserslautern sought to investigate, together with their Israeli research colleague and bioinformatician Oded Béjà (from the Technion-Israel Institute of Technology), the extent to which pigment synthesis is prevalent in certain marine regions. The biosynthesis of pink pigment ‘phycoerythrobilin’ was the focus of their work.

“The genetic information for the synthesis of the pink pigment is widespread throughout all the world’s oceans,” says the professor. This is where the researchers made a notable discovery: this information is wide spread in viruses.

“The viruses carry genetic information which can be used to produce the pink-coloured pigments,” Frankenberg-Dinkel explains. The viruses introduce this genetic information into bacterial cells which enable them to synthesise the pink pigment. “What is new is that we are able to use bioinformatic analyses to determine the type of viruses which carry this genetic information”, Frankenberg-Dinkel continues. “We were able to show that the viruses most likely affect those microbes for which we do not yet know what purpose the pigment serves.”

For her study, Frankenberg-Dinkel and her team analysed datasets obtained from metagenome databases. “These contain all the genetic information of all the organisms we would usually extract during a field trip at sea, for example,” the researcher explains. “This technique allows us to gain a detailed insight into the ecosystem without having to investigate it on location.”

The biologists from the University of Kaiserslautern work closely with their colleague from the Technion-Israel Institute of Technology in Haifa. This cooperation is funded by the German-Israeli Foundation for Scientific Research and Development.

The study was published in the renowned scientific journal ‘Environmental Microbiology’: Ledermann, B., Beja, O. & Frankenberg-Dinkel, N. (2016) New biosynthetic pathway for pink pigments from uncultured oceanic viruses.
doi:10.1111/1462-2920.13290

For enquiries:
Prof Dr Nicole Frankenberg-Dinkel
Department of Biology
Email: nfranken@bio.uni-kl.de
Tel.: +49 631/205-2353

Katrin Müller | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

NASA keeps watch over space explosions

16.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>