Virus rounds up enzymes, disarms plant

This is a model depicting that plant virus proteins (TGBp1: blue) aggregate and inactivate double-stranded RNA (dsRNA) synthesizing protein complexes (yellow: SGS3/RDR6 bodies). Credit: Shigetou Namba, The University of Tokyo

Invading viruses carry genetic material that hijacks the host cell's machinery, fooling it into producing proteins and new viruses. All cells from fungi to plants and mammals employ RNA silencing, a cellular process essential for the regulation of gene expression that also functions as an important defense mechanism.

Through RNA silencing, plant cells recognize this viral genetic material, remember and copy it so that other cells in the organism can be warned and destroy the virus. Viruses are known to fight back with RNA silencing suppressors, proteins that inhibit this defense mechanism, but how they interfere with the recording of viral genetic information was unknown.

Now, a research team headed by Professor Shigetou Namba and Dr. Yukari Okano in the Graduate School of Agricultural and Life Sciences has shown for the first time that the plant virus protein TGBp1 disarms RNA silencing by causing two enzymes involved in producing copies of viral genetic information to aggregate as inactive clusters in cells surrounded by the virus protein.

The two enzymes are SGS3 and RDR6, which are involved in producing copies of viral genetic information as double-stranded RNA, an essential step in the plant defense process. The researchers demonstrated that TGBp1 interacted with and inhibited the functions of SGS3 and RDR6, and attached fluorescent markers to TGBp1 and SGS3 to show visually that SGS3, which is usually distributed throughout the cell, formed clusters surrounded by TGBp1.

These results suggest that TGBp1 causes the enzymes SGS3 and RDR6 to form clusters, impeding the formation of double-stranded RNA and inhibiting the recording of viral genetic information, thus reducing plant resistance to viral infection.

“We expected that recording viral genetic information would be the most important step in RNA silencing, because if you can't remember the virus, you can't warn the rest of the organism and stop it spreading,” explains Professor Namba.

“This would also make it important for the virus to target, but no one had confirmed any viral RNA silencing suppressors targeting this step in plants. Now we are very excited to be the first to do so, and we expect that other plant viral proteins will be found to have similar functions. Recently other researchers have reported that some viruses infecting humans also have RNA silencing suppressors, so this research may also contribute to the development of medicines targeting those viruses.”

###

Keywords: RNA silencing, RNA silencing suppressor, double-stranded RNA, plant virus, TGBp1, SGS3, RDR6, plantago asiatica mosaic virus

Article information

Yukari Okano, Hiroko Senshu, Masayoshi Hashimoto, Yutaro Neriya, Osamu Netsu, Nami Minato, Tetsuya Yoshida, Kensaku Maejima, Kenro Oshima, Ken Komatsu, Yasuyuki Yamaji and Shigetou Namba, “In planta recognition of a dsRNA synthesis protein complex by a potexviral RNA silencing suppressor” The Plant Cell 26 (5) May 2014. doi: 10.1105/tpc.113.120535

http://www.plantcell.org/content/early/2014/05/30/tpc.113.120535.abstract

Links

The University of Tokyo
http://www.u-tokyo.ac.jp/en/

Graduate School of Agricultural and Life Sciences
http://www.a.u-tokyo.ac.jp/english/

Laboratory of Plant Pathology
http://papilio.ab.a.u-tokyo.ac.jp/planpath/en/index-en.html

Contact information

Research contact:

Professor Shigetou Namba
Laboratory of Plant Pathology
Graduate School of Agricultural and Life Sciences
The University of Tokyo
1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
Tel: +81 (0)3-5841-5053
Fax: +81 (0)3-5841-5054
Email: anamba@mail.ecc.u-tokyo.ac.jp

Press officer:

Yoko Takemoto
Public Relations Division
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654
Tel: +81 (0)3-5841-2031
Fax: +81 (0)3-3816-3913
Email: kouhoukikaku@ml.adm.u-tokyo.ac.jp

Media Contact

Yoko Takemoto Eurek Alert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Acetylation: a Time-Keeper of glucocorticoid Sensitivity

Understanding the regulatory mechanism paves the way to enhance the effectiveness of anti-inflammatory therapies and to develop strategies to counteract the negative effects of stress- and age-related cortisol excess. The…

Partners & Sponsors