Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virus kills melanoma in animal model, spares normal cells

24.04.2013
Researchers from Yale University School of Medicine have demonstrated that vesicular stomatitis virus (VSV) is highly competent at finding, infecting, and killing human melanoma cells, both in vitro and in animal models, while having little propensity to infect non-cancerous cells.

"If it works as well in humans, this could confer a substantial benefit on patients afflicted with this deadly disease," says Anthony van den Pol, a researcher on the study. The research was published online ahead of print in the Journal of Virology.

Most normal cells resist virus infection by activating antiviral processes that protect nearby cells. "The working hypothesis was that since many cancer cells show a deficient ability to withstand virus infection, maybe a fast-acting virus such as VSV would be able to infect and kill cancer cells before the virus was eliminated by the immune system," says van den Pol. And indeed, the virus was able to selectively infect multiple deadly human melanomas that had been implanted in a mouse model, yet showed little infectivity towards normal mouse cells, he says.

Many different mechanisms are involved in innate immunity, the type of immunity that combats viral infection. van den Pol plans to investigate which specific mechanisms are malfunctioning in cancer cells, knowledge that would be hugely beneficial both in understanding how cancer affects immunity, and in enhancing a virus' ability to target cancer cells, he says.

Melanoma is the most deadly skin cancer. Most melanomas are incurable once they have metastasized into the body. The incidence of melanoma has tripled over the last three decades, and it accounts for approximately 75 percent of skin cancer-related deaths.

A copy of the manuscript can be found online at http://bit.ly/asmtip0413b. Formal publication is scheduled for the June 2013 issue of the Journal of Virology.

(G. Wollmann, J.N. Davis, M.W. Bosenberg, and A.N. van den Pol, 2013. Vesicular stomatitis virus variants selectively infect and kill human melanomas but not normal melanocytes. J. Virol. Published ahead of print 3 April 2013 , doi:10.1128/JVI.03311-12)

Journal of Virology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>