Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virus-cutting enzyme helps bacteria remember a threat

23.02.2015

Researchers find a new role for Cas9 in bacterial immune systems

Bacteria may not have brains, but they do have memories, at least when it comes to viruses that attack them. Many bacteria have a molecular immune system which allows these microbes to capture and retain pieces of viral DNA that they have encountered in the past, in order to recognize and destroy it when it shows up again.


CRISPR systems allow bacteria to adapt to new viral threats. Above, Staphylococcus aureus microbes lacking a CRISPR system are killed off by the bacteria-attacking virus ?NM4. This plate approximates the concentration of virus particles used in the recent experiments.

Credit: Zach Veilleux / The Rockefeller University

Research at Rockefeller University described Wednesday (February 18) in Nature offers new insight into the mysterious process by which this system works to encode viral DNA in a microbe's genome for later use as guides for virus-cutting enzymes.

"Microbes, like vertebrates, have immune systems capable of adapting to new threats. Cas9, one enzyme employed by these systems, uses immunological memories to guide cuts to viral genetic code. However, very little is known about how these memories are acquired in the first place," says Assistant Professor Luciano Marraffini, head of the Laboratory of Bacteriology. "Our work shows that Cas9 also directs the formation of these memories among certain bacteria."

These memories are embedded in the bacterial equivalent of an adaptive immune system capable of discerning helpful from harmful viruses called a CRISPR (clustered regularly interspaced short palindromic repeats) system. It works by altering the bacterium's genome, adding short viral sequences called spacers in between the repeating DNA sequences. These spacers form the memories of past invaders. They serve as guides for enzymes encoded by CRISPR-associated genes (Cas), which seek out and destroy those same viruses should they attempt to infect the bacterium again.

Cas9's ability to make precision cuts within a genome - viral or otherwise - has caught the attention of researchers who now use it to alter cells' genetics for experimental or therapeutic purposes. But it is still not well understood just how this CRISPR system works in its native bacteria.

Some evidence suggested that other Cas enzymes managed the memory-making process on their own, without Cas9. But because of the way Cas9 goes about identifying the site at which to make a cut, the researchers, including co-first authors Robert Heler, a graduate student, and Poulami Samai, a postdoc in the lab, suspected a role for Cas9 in memory making.

In addition to matching its CRISPR guide sequence up with the DNA of the virus, Cas9 needs to find a second cue nearby: a PAM (protospacer adjacent motif) sequence in the viral DNA. This is a crucial step, since it is the absence of a PAM sequence that prevents Cas9 from attacking the bacterium's own memory-containing DNA.

"Because Cas9 must recognize a PAM sequence before cutting the viral DNA, it made sense to us that Cas9 would also recognize the PAM sequence when the system is forming a memory of its first encounter with a virus," Heler says. "This is a new and unexpected role for Cas9."

To test their hypothesis, Heler swapped the Cas9 enzymes between the immune systems of Streptococcus pyogenes and Streptococcus thermophilus, each of which recognizes a different PAM sequence. As a result, the PAM sequences followed, swapping between the two bugs - evidence that Cas9 is responsible for identifying the PAM during memory formation. In another experiment, he altered the part of Cas9 that binds to the PAM sequence, and found the microbes then began acquiring the target viral sequences randomly, making them unusable.

Samai, meanwhile, looked at the relationship between Cas9 and three other Cas enzymes: Cas1, Cas2 and Csn2. Components of the same CRISPR system, these enzymes were already suspected to play a role in memory making without help from Cas9.

Samai expressed these enzymes together, then tagged each one and attempted to purify it. But each time, the other three came out as well. "This indicates there is some kind of interaction between the four; most likely they form a complex during the acquisition of memory," she says.

"Because of its importance to biotechnology, Cas9's has attracted a great deal of interest for its action targeting and cleaving viral genomes. Our work reveals an overlooked role for Cas9: forming the memories that make adaptive immunity possible for bacteria," Marraffini says.

Wynne Parry | EurekAlert!

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>