Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech virologist developing more potent vaccine technology

06.05.2009
With applicability to many viruses

Virginia Tech virologist Chris Roberts' goal is to develop a platform for a flu vaccine that allows rapid modifications to meet new strains of flu.

Since 90 percent of complicated flu cases occur among those over 65, the associate professor in biomedical sciences and pathobiology (http://www.vetmed.vt.edu/org/dbsp/) has been working on a novel flu vaccine for the elderly. That is still his aim, but he is now more motivated than ever to speed development of his cell culture-based vaccine technology that is more rapid than the egg-based growth system presently used to create vaccines.

Influenza is an enveloped virus. It obtains its envelope or membrane as it buds from the surface of the host cell it has invaded. Roberts is using this practice against the virus – introducing membrane-bound immune-system stimulatory molecules such as cytokines into cells in such a way that the virus will incorporate them as part of its envelope. "Using this approach, inactivated influenza vaccines can be created that have enhanced immunogenicity, meaning they can boost our immune response to the vaccine and hopefully provide better protection against invading viruses," Roberts said.

Normally, cytokines are secreted proteins that boost and direct the immune system's response to inflammation and infections. When a foreign particle gets into the body, the body ultimately responds by stimulating 1) B cells to secrete anti-viral antibodies, 2) cytotoxic T cells to kill infected host cells, and 3) helper T cells to regulate and control the response of both cell types. Antibodies work by recognizing and binding to specific components of the virus such as the glycoproteins on the surface of the virus (envelope). This serves to neutralize the ability of the virus to infect cells in the respiratory tract. A vaccination introduces weakened or killed forms of a virus so that the body recognizes the pathogen and begins producing antibodies to fight it. These antibodies are then ready to fight off infection should they encounter the virus.

Roberts' vaccine goes a step further and provides an immune-boosting signal on the surface of the vaccine.

Presently, vaccines are made from eggs and it generally takes one or two special pathogen-free eggs per dose. It also takes four to five months to prepare enough doses of the vaccine for a given year. Several companies are actively working to develop cell culture based vaccines for flu, such as is already used for polio and chickenpox vaccines, for instance. "The process could someday allow us to reduce the amount of time required to make flu vaccines," said Roberts. "Cell culture based vaccines would also help us respond more rapidly when new viral strains emerge."

Roberts' approach, to have the virus clothed in its own vaccine, capitalizes on the use of cell culture based systems for vaccine production. Roberts' group uses molecular biology techniques to fuse specific cytokines to components of the viral glycoproteins that facilitate their recognition by the virus assembly machinery. The resulting cytokine fusion proteins are then expressed in a virus permissive cell line and are actively incorporated into newly formed virus particles once those cells are infected with the virus. Now, when the virus leaves its host cell, it has cytokines bound to its outer surface and these particles are harvested, purified, and then chemically inactivated to create the vaccine. Importantly, these "killed vaccines," which Roberts' has dubbed FLU CYT-IVACs (for FLU CYTokine bearing Inactivated VACcine), still retain the bioactivity of cytokines.

The research has been tested in young adult mice and several CYT-IVAC formulations have shown promise in providing enhanced protection against viral pneumonia. Roberts noted, "Preliminary testing has also revealed that some of these FLU CYT-IVACs are better at protecting aged or old mice against viral pneumonia than non-modified vaccine."

He is already expanding this research to include the use of human specific cytokines in the FLU CYT-IVAC formulations. "Prior to being used as a human vaccine, these humanized FLU CYT-IVACs will have to undergo rigorous testing to ensure vaccine safety and this will require additional funding, which we are actively pursuing," Roberts said.

"The significance lies in the versatility of the cell culture-based vaccine platform; you can custom make a vaccine to tailor to the present need – such as swine flu," Roberts said. "And you can produce an immune-boosting response in populations with lower immunity."

This work was supported by the National Institute of Allergy & Infectious Diseases. The results of the mice trials have been published in the April 24, 2009 issue of Virology Journal ("Membrane-bound Cytokines Augment Influenca Virus Vaccines and Protect Against lethal Challenge in Mice," by Andrew S. Herbert, Lynn Heffron, Roy Sundick, and Paul C. Roberts). He and his collaborators also recently published a vaccine study in poultry in the January 2009 Journal of Interferon and Cytokine Research ("A Novel Method to Incorporate Bioactive Cytokines as Adjuvants on the Surface of Virus Particles," by Yufang Yang, David Leggat, Herbert, Roberts, and Sundick).

Roberts has been at Virginia Tech in the Virginia-Maryland Regional College of Veterinary Medicine (http://www.vetmed.vt.edu/index.asp) since 2007 and is part of the Virginia Tech Carilion School of Medicine and Research Institute. He earned his bachelor's degree at Davidson College, Davidson, N.C.; and his master's degree and doctorate in microbiology and virology at Philipps-Universitat Marburg, Marburg, Germany.

Learn more about Roberts work at: www.vetmed.vt.edu/org/dbsp/faculty/roberts.asp

Flu virus primer

The influenza virus is an RNA virus. It includes Influenza A, B, and C. Components of A and B are included in yearly vaccines. Type C is rare and sporadic. Influenza has a broad host range with swine and birds being the most important reservoirs for types that can infect humans, although most viruses are species specific.

Epidemics are caused by antigenic drift – mutations that make the virus unrecognizable to the antibodies induced by last year's vaccine, for example.

Seasonal flu usually results in an infection rate of 5 to 20 percent with about 36,000 deaths each year. But there have been three pandemics that killed millions of people, all caused by a totally new subtype of the Influenza A virus.

Spanish flu of 1918 – H1N1
Asian flu of 1957-58 – H2N2
Hong Kong flu of 1968-69 – H3N2
The letters and numbers refer to subtype of the viral surface proteins -- hemagglutinin (H) and neuraminidase (N).

Usually the older strains disappear once new strains spread throughout the population. "Diagnosis of newly emerging strains will continue to be difficult because we still are unable to predict all the variations in influenza strains that will evolve in nature," said Roberts.

The first occurrence of the bird flu was 1997. There have been 421 confirmed cases with 257 deaths as of April 23, 2009. "So it is very lethal but not very conducive for human to human spread," Roberts said.

Swine flu

This appears to be a "mixed" strain that possesses genetic elements derived from humans, avian species, and swine species of the virus, which makes it more difficult to pinpoint the exact origin.

Through the efforts of the World Health Organization and numerous national agencies worldwide there is now a concerted surveillance effort that actually led to fairly quick assessment of this outbreak. Those agencies are to be commended, Roberts said.

It may be too soon to predict how this strain will evolve during the next several months, which makes vaccine design challenging. Existing vaccines would be unlikely to offer much protection.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>