Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral decoys - how the Ebola virus leads the immune system astray

13.02.2019

Currently published in Cell Reports.
A research team from Tübingen and Göttingen has described in the renowned journal Cell Reports a new mechanism how the Ebola virus escapes the immune system. The virus causes infected cells to release decoys that inactivate neutralizing antibodies and prevent immune cells from releasing important messenger molecules. These findings could lead to the development of new vaccines against hemorrhagic fever viruses.

As reported by the team led by the Tübingen virologist Prof. Michael Schindler, the glycoprotein of the Ebola virus causes cells to release small vesicles bearing the Ebola virus glycoprotein on their surface. These so-called virosomes bind antibodies directed against the Ebola virus glycoprotein and could thereby interfere with control of viral infection by the antibody response.


Human cells that produce virosomes. For this, the cells were manipulated so that they pro-duce fluorescently labeled Ebola envelope protein. This is incorporated into the cell membranes and released as virosomes. These have a size of about ten thousandths of a millimeter and were visual-ized via high-resolution microscopy.

University Hospital Tübingen

In addition, the virosomes suppress the release of cytokines and chemokines by macrophages. Macrophages are scavenger cells that release messenger molecules and thereby coordinate the immune responses against invading viruses.

Why do most patients mount an immune response against Ebola virus despite the release of virosomes? Again, the virologists have an explanation: "The immune system has developed countermeasures against virosomes," explains Schindler.

"We were able to show that another cellular protein, which plays an important role in innate immune defense, can prevent the release of virosomes.”

The newly discovered properties of virosomes are of importance for basic research. In addition, they have implications for therapy and prevention. "The virosomes apparently carry functionally intact Ebola glycoprotein on their surface, but are otherwise not infectious," explains Prof. Stefan Pöhlmann, co-author of the study and head of the Infection Biology Unit at the German Primate Center in Göttingen. "This makes virosomes attractive candidates for vaccine development."

The researchers now want to investigate whether other hemorrhagic fever viruses also release virosomes and whether they can be used for the production of vaccines.

Caption: Human cells that produce virosomes. For this, the cells were manipulated so that they pro-duce fluorescently labeled Ebola envelope protein. This is incorporated into the cell membranes and released as virosomes. These have a size of about ten thousandths of a millimeter and were visual-ized via high-resolution microscopy.

Wissenschaftliche Ansprechpartner:

University Hospital Tuebingen
Institute of Medical Virology and Epidemiology
Prof. Dr. med. Michael Schindler
Head Molecular Virology of Human Infectious Diseases
Elfriede-Aulhorn-Str. 6, 72076 Tuebingen, Germany
Tel. +49 (0)7071 29-87459
Michael.Schindler@med.uni-tuebingen.de

Originalpublikation:

Release of immunomodulatory Ebola virus glycoprotein-containing microvesicles is suppressed by tetherin in a species-specific manner.
Authors: Julia Nehls, Ramona Businger, Markus Hoffmann, Constantin Brinkmann, Birgit Fehrenbacher, Martin Schaller, Brigitte Maurer, Caroline Schönfeld, Daniela Krämer, Stephan Hailfinger, Stefan Pöhlmann, Michael Schindler
DOI-Nummer: https://doi.org/10.1016/j.celrep.2019.01.065

Dr. Ellen Katz | idw - Informationsdienst Wissenschaft
Further information:
http://www.medizin.uni-tuebingen.de/

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>