Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral decoys - how the Ebola virus leads the immune system astray

13.02.2019

Currently published in Cell Reports.
A research team from Tübingen and Göttingen has described in the renowned journal Cell Reports a new mechanism how the Ebola virus escapes the immune system. The virus causes infected cells to release decoys that inactivate neutralizing antibodies and prevent immune cells from releasing important messenger molecules. These findings could lead to the development of new vaccines against hemorrhagic fever viruses.

As reported by the team led by the Tübingen virologist Prof. Michael Schindler, the glycoprotein of the Ebola virus causes cells to release small vesicles bearing the Ebola virus glycoprotein on their surface. These so-called virosomes bind antibodies directed against the Ebola virus glycoprotein and could thereby interfere with control of viral infection by the antibody response.


Human cells that produce virosomes. For this, the cells were manipulated so that they pro-duce fluorescently labeled Ebola envelope protein. This is incorporated into the cell membranes and released as virosomes. These have a size of about ten thousandths of a millimeter and were visual-ized via high-resolution microscopy.

University Hospital Tübingen

In addition, the virosomes suppress the release of cytokines and chemokines by macrophages. Macrophages are scavenger cells that release messenger molecules and thereby coordinate the immune responses against invading viruses.

Why do most patients mount an immune response against Ebola virus despite the release of virosomes? Again, the virologists have an explanation: "The immune system has developed countermeasures against virosomes," explains Schindler.

"We were able to show that another cellular protein, which plays an important role in innate immune defense, can prevent the release of virosomes.”

The newly discovered properties of virosomes are of importance for basic research. In addition, they have implications for therapy and prevention. "The virosomes apparently carry functionally intact Ebola glycoprotein on their surface, but are otherwise not infectious," explains Prof. Stefan Pöhlmann, co-author of the study and head of the Infection Biology Unit at the German Primate Center in Göttingen. "This makes virosomes attractive candidates for vaccine development."

The researchers now want to investigate whether other hemorrhagic fever viruses also release virosomes and whether they can be used for the production of vaccines.

Caption: Human cells that produce virosomes. For this, the cells were manipulated so that they pro-duce fluorescently labeled Ebola envelope protein. This is incorporated into the cell membranes and released as virosomes. These have a size of about ten thousandths of a millimeter and were visual-ized via high-resolution microscopy.

Wissenschaftliche Ansprechpartner:

University Hospital Tuebingen
Institute of Medical Virology and Epidemiology
Prof. Dr. med. Michael Schindler
Head Molecular Virology of Human Infectious Diseases
Elfriede-Aulhorn-Str. 6, 72076 Tuebingen, Germany
Tel. +49 (0)7071 29-87459
Michael.Schindler@med.uni-tuebingen.de

Originalpublikation:

Release of immunomodulatory Ebola virus glycoprotein-containing microvesicles is suppressed by tetherin in a species-specific manner.
Authors: Julia Nehls, Ramona Businger, Markus Hoffmann, Constantin Brinkmann, Birgit Fehrenbacher, Martin Schaller, Brigitte Maurer, Caroline Schönfeld, Daniela Krämer, Stephan Hailfinger, Stefan Pöhlmann, Michael Schindler
DOI-Nummer: https://doi.org/10.1016/j.celrep.2019.01.065

Dr. Ellen Katz | idw - Informationsdienst Wissenschaft
Further information:
http://www.medizin.uni-tuebingen.de/

More articles from Life Sciences:

nachricht Numbers count in the genetics of moles and melanomas
16.08.2019 | University of Queensland

nachricht Working out why plants get sick
16.08.2019 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Graphene nanoflakes: a new tool for precision medicine

19.08.2019 | Health and Medicine

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>