Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral decoys - how the Ebola virus leads the immune system astray

13.02.2019

Currently published in Cell Reports.
A research team from Tübingen and Göttingen has described in the renowned journal Cell Reports a new mechanism how the Ebola virus escapes the immune system. The virus causes infected cells to release decoys that inactivate neutralizing antibodies and prevent immune cells from releasing important messenger molecules. These findings could lead to the development of new vaccines against hemorrhagic fever viruses.

As reported by the team led by the Tübingen virologist Prof. Michael Schindler, the glycoprotein of the Ebola virus causes cells to release small vesicles bearing the Ebola virus glycoprotein on their surface. These so-called virosomes bind antibodies directed against the Ebola virus glycoprotein and could thereby interfere with control of viral infection by the antibody response.


Human cells that produce virosomes. For this, the cells were manipulated so that they pro-duce fluorescently labeled Ebola envelope protein. This is incorporated into the cell membranes and released as virosomes. These have a size of about ten thousandths of a millimeter and were visual-ized via high-resolution microscopy.

University Hospital Tübingen

In addition, the virosomes suppress the release of cytokines and chemokines by macrophages. Macrophages are scavenger cells that release messenger molecules and thereby coordinate the immune responses against invading viruses.

Why do most patients mount an immune response against Ebola virus despite the release of virosomes? Again, the virologists have an explanation: "The immune system has developed countermeasures against virosomes," explains Schindler.

"We were able to show that another cellular protein, which plays an important role in innate immune defense, can prevent the release of virosomes.”

The newly discovered properties of virosomes are of importance for basic research. In addition, they have implications for therapy and prevention. "The virosomes apparently carry functionally intact Ebola glycoprotein on their surface, but are otherwise not infectious," explains Prof. Stefan Pöhlmann, co-author of the study and head of the Infection Biology Unit at the German Primate Center in Göttingen. "This makes virosomes attractive candidates for vaccine development."

The researchers now want to investigate whether other hemorrhagic fever viruses also release virosomes and whether they can be used for the production of vaccines.

Caption: Human cells that produce virosomes. For this, the cells were manipulated so that they pro-duce fluorescently labeled Ebola envelope protein. This is incorporated into the cell membranes and released as virosomes. These have a size of about ten thousandths of a millimeter and were visual-ized via high-resolution microscopy.

Wissenschaftliche Ansprechpartner:

University Hospital Tuebingen
Institute of Medical Virology and Epidemiology
Prof. Dr. med. Michael Schindler
Head Molecular Virology of Human Infectious Diseases
Elfriede-Aulhorn-Str. 6, 72076 Tuebingen, Germany
Tel. +49 (0)7071 29-87459
Michael.Schindler@med.uni-tuebingen.de

Originalpublikation:

Release of immunomodulatory Ebola virus glycoprotein-containing microvesicles is suppressed by tetherin in a species-specific manner.
Authors: Julia Nehls, Ramona Businger, Markus Hoffmann, Constantin Brinkmann, Birgit Fehrenbacher, Martin Schaller, Brigitte Maurer, Caroline Schönfeld, Daniela Krämer, Stephan Hailfinger, Stefan Pöhlmann, Michael Schindler
DOI-Nummer: https://doi.org/10.1016/j.celrep.2019.01.065

Dr. Ellen Katz | idw - Informationsdienst Wissenschaft
Further information:
http://www.medizin.uni-tuebingen.de/

More articles from Life Sciences:

nachricht University of Konstanz gains new insights into the recent development of the human immune system
13.02.2019 | Universität Konstanz

nachricht BFU physicists developed a new method to identify antibiotics-resistant bacteria
13.02.2019 | Immanuel Kant Baltic Federal University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

Im Focus: Finally available in a bottle

Researchers succeed in gaining access to an important chemical compound

Since the discovery of the first homoleptic metal carbonyl complex Ni(CO)4 more than 130 years ago, scientists try to obtain further such compounds formed from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Viral decoys - how the Ebola virus leads the immune system astray

13.02.2019 | Life Sciences

University of Konstanz gains new insights into the recent development of the human immune system

13.02.2019 | Life Sciences

New RMU project in the field of artificial intelligence and deep learning

13.02.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>