Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VIB and UGent researchers identify key mechanisms of cell division in plants

12.08.2010
New technology can be applied to boost crop yields

As a result of the worldwide growing population, the output of agricultural crops has to double by 2050. To address this challenge, the world needs new varieties of plants, with higher yield per hectare than current varieties. "The major driving force behind plant growth is cell division," says Geert De Jaeger, group leader at VIB and Ghent University. "If you understand the machinery that governs this process, you have the key to increase agricultural yield."

Four years and 300 experiments

The research, which took four years and more than 300 experiments to complete, was conducted by Jelle Van Leene and colleagues from De Jaeger's team, together with Erwin Witters of the University of Antwerp. The researchers have now published the complete map of the machinery behind cell division in the model plant Arabidopsis thaliana. During their experiments, the researchers discovered more than 100 new proteins involved in the process.

TAP: a combination of transgenic technology, protein purification, mass spectrometry and bioinformatics

Many proteins with an essential role in the cell cycle of plants have been revealed by the global sequencing projects of recent years. Until now, little was known about the interactions between these proteins, the actual core of the machinery. The newly developed 'Tandem Affinity Purification (TAP) Platform' allows researchers to quickly unravel the interactions between the proteins involved. TAP requires a multidisciplinary approach, combining transgenic technology, protein purification, mass spectrometry and bioinformatics.

Joris Gansemans | EurekAlert!
Further information:
http://www.vib.be

Further reports about: Arabidopsis thaliana TAP genes VIB agricultural crop cell division proteins

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>