Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ventilation for corals: Symbiosis with damselfish brings great advantages for coral growth

19.05.2017

Many stony corals live in close partnership with different species of damselfish. Reef ecologists from the Leibniz Centre for Tropical Marine Research (ZMT) in Bremen (Germany) have now taken a closer look at this symbiosis and discovered a previously unknown advantage for the corals. The fish support the corals in their photosynthesis, which is important for coral growth. The study has just been published in the Journal of Experimental Biology and was also featured in Nature Magazine’s research highlights.

Coral reefs are highly complex communities with multifaceted interrelations and dependencies, many of which are not yet thoroughly studied. The mutually beneficial symbiosis between clownfish and anemones is well known: the fish provide nutrients to their host while at the same time finding a place to hide from predators inside the anemone.


Red Sea dascyllus among the branches of a Stylophora coral

Nur Garcia, Leibniz Centre for Tropical Marine Research


Red Sea dascyllus among the branches of a Stylophora coral

Nur Garcia, Leibniz Centre for Tropical Marine Research

The same advantages are attributed to the symbiosis between damselfish and stony corals. It is strikingly noticeable, however, how tirelessly the damselfish flick their fins when they are hiding among the coral branches. They display this behaviour not just during the day, but also whilst sleeping at night.

Ecologist Nur Garcia and her colleagues from the ZMT have studied this symbiosis in more details. In the Red Sea near Eilat (Israel) they observed the damselfish, Dascyllus marginatus, which frequently resides inside colonies of the branching Stylophora pistillata coral. “More than 30% of the fish’s time is spent among the coral branches”, explains Garcia. “Often a dozen damselfish or more are gathering like a cloud above the football-sized coral.”

In the lab the scientists brought fish and corals together in a respiration chamber to measure respiration and photosynthesis rates. Garcia obtained some unexpected results: Even a single damselfish intermittently visiting the coral increased the photosysnthesis rate of Stylophora by up to 6% a day. Corals that live in symbiosis with damselfish can thus potentially grow considerably faster.

Tiny algae living inside the tissue of stony corals are responsible for the photosynthesis. Their products such as high-energy sugars are beneficial for the corals, allowing them to build the large calcium carbonate structures typical for tropical reefs. During the night corals take up oxygen, in the daytime they emit it during photosynthesis. If an excess of oxygen accumulates, a particular enzyme essential for photosynthesis is inhibited in its activity.

“By flicking its fins the damselfish improve the water circulation as well as the supply and removal of oxygen, which is extremely important in areas of low flow such as lagoons enclosed by reefs,” says Dr. Sebastian Ferse, a reef ecologist who headed the study at the ZMT.

The symbiosis could also have a positive effect during coral bleaching. Stressful conditions such as increased water temperatures can lead to the production of oxygen radicals by the coral, which foster bleaching. The fin flicking can aid in the removal of such radicals.

“However, increased overfishing could spell doom for the symbiosis”, cautions Ferse. “If damselfish predators, i.e. bigger fish, are increasingly caught, the damselfish do not need to hide among the corals any longer."

"The symbiotic damselfish are also popular ornamental fish and are caught for the marine aquarium trade. In the Thousand Islands archipelago near Jakarta several species have already disappeared,” says Ferse.

Contact:
Dr. Sebastian Ferse | Leiter AG Nutzung, Resilienz und Diversität von Korallenriffen
Leibniz-Zentrum für Marine Tropenforschung (ZMT)
Email: sebastian.ferse@leibniz-zmt.de | Tel: 0421 - 238 00-28
Bis Montag, den 22.5.17 zu erreichen unter: 0049 (0) 157 72379259

Dr. Susanne Eickhoff | Presse-und Öffentlichkeitsarbeit
Leibniz-Zentrum für Marine Tropenforschung (ZMT)
Email: susanne.eickhoff@leibniz-zmt.de | Tel: 0421 - 238 00-37

About the Leibniz Centre for Tropical Marine Research
In research and education the Leibniz Centre for Tropical Marine Research (ZMT) in Bremen is dedicated to the better understanding of tropical coastal ecosystems. As an interdisciplinary Leibniz institute the ZMT conducts research on the structure and functioning of tropical coastal ecosystems and their reaction to natural changes and human interactions. It aims to provide a scientific basis for the protection and sustainable use of these ecosystems. The ZMT works in close cooperation with partners in the tropics, where it supports capacity building and the development of infrastructures in the area of sustainable coastal zone management. The ZMT is a member of the Leibniz Association.

Weitere Informationen:

http://jeb.biologists.org/content/220/10/1803
https://www.nature.com/articles/n-12293530

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft
Further information:
http://www.leibniz-zmt.de

Further reports about: Marine Photosynthesis Tropenforschung ZMT coastal ecosystems coral growth ecosystems

More articles from Life Sciences:

nachricht A new 'cool' blue
17.01.2020 | American Chemical Society

nachricht Neuromuscular organoid: It’s contracting!
17.01.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>