Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Velcro for human cells

16.01.2019

Freiburg researchers engineer cellular adhesion receptors that can be controlled with light

The ability of cells to adhere to each other and to their environment is the basis for multicellular life. Adhesion occurs via diverse receptors at the surface of cells that bind to specific ligands in their surroundings.


The OptoMatrix-OptoIntegrin system: OptoIntegrin-expressing cancer cells are seen adhering to the OptoMatrix, but only to the part illuminated with red (660nm) light. Photo: J. Baaske

Despite the importance of these adhesion receptors, there is a paucity of tools available for precisely controlling their interactions with the environment.

To address this limitation, an interdisciplinary team of scientists from the Freiburg Signalling Research Excellence Clusters BIOSS and CIBSS have engineered an adhesion receptor and a complementary synthetic extracellular environment that can be activated by light.

This system can be adapted to render other receptor–ligand interactions amenable to precise manipulation with light. The scientists have published their new optogenetic system in Communications Biology.

Optogenetics uses light to control proteins and the cellular processes in which they are involved. “This technique has revolutionized the analysis of cellular signalling because it is non-invasive and because it allows precise spatiotemporal control of signalling processes”, says lead author of the study, Prof. Dr. Wilfried Weber.

Optogenetics has been widely used to control processes inside the cells. The authors decided to bring optogenetics into the extracellular realm, specifically to test whether they could control receptor–matrix interactions using light.

The team of researchers, which also included the groups of Prof. Dr. Gerald Radziwill and Prof. Dr. Wolfgang Schamel, focussed their attention on an important class of receptors – called integrins – that facilitate adhesion to extracellular matrix.

“Although integrins have central roles in many normal biological processes, they can also promote growth and spread of cancer and have thus been explored as targets for anti-cancer therapies.” explains first author Julia Baaske. To control integrin-mediated adhesion using light, the scientists first developed an OptoMatrix coated with a light-sensitive plant protein called phytochrome B.

Then they engineered an OptoIntegrin equipped with a phytochrome-interacting factor (PIF6) and expressed this receptor in cancer cells. Phytochrome B is usually found in its inactive form, but when exposed to a specific wavelength of red light it is activated and can be bound by PIF6; when exposed to infrared light it switches back to the inactive form.

“The most exciting experiment was when we first shone red light on the OptoMatrix: the cells expressing OptoIntegrin immediately adhered to the matrix and activated intracellular signalling processes. Then when we used infrared light, they almost completely detached.” explains Baaske. “Essentially, we have developed light-controlled velcro for human cells”.

The system not only allows integrin–matrix interactions to be turned on and off with high temporal precision; it also allows spatial control. Strong adherence of cells expressing OptoIntegrins only occurs at parts of the Optomatrix that have been activated with light. “This system serves as a blueprint for precise spatiotemporal control of other receptor–ligand interactions using light.” says Weber, who is also a member of the Speaker Team of the recently launched CIBSS Excellence Cluster.

“This and other optogenetic and chemical control-of-function technologies that will be developed in CIBSS will give us unprecedented control of and insight into the spatiotemporal dynamics of biological signalling processes.”

Wissenschaftliche Ansprechpartner:

Prof. Dr. Wilfried Weber
CIBSS – Centre for Integrative Biological Signalling Studies
Phone: +49 (0)761 / 203 - 97654
E-Mail: wilfried.weber@biologie.uni-freiburg.de

Originalpublikation:

Baaske J., Mühlhäuser W.W.D., Yousefi O.S., Zanner S., Radziwill G., Hörner M., Schamel W.W.A., Weber W. (2019): Optogenetic control of integrin–matrix interaction. In: Communications Biology. DOI: 10.1038/s42003-018-0264-7

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/velcro-for-human-cells

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht DNA is held together by hydrophobic forces
23.09.2019 | Chalmers University of Technology

nachricht New method for the measurement of nano-structured light fields
23.09.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Clarification of a new synthesis mechanism of semiconductor atomic sheet

23.09.2019 | Materials Sciences

SUTD researchers revolutionize 3D printed products with data-driven design method

23.09.2019 | Information Technology

Bioplastics from Waste Fats

23.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>