Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variation in prostate stem cell antigen gene raises bladder cancer risk

04.08.2009
International study uncovers genetic link for dangerous cancer

Researchers have pinpointed a specific gene variation that causes increased risk of urinary bladder cancer, according to a scientific team led by The University of Texas M. D. Anderson Cancer Center.

These findings were reported today in the advance online publication of Nature Genetics, and determined that people with the variant had a 30 percent to 40 percent higher risk for bladder cancer. Scientists hope the results of this large, multi-site international study may help determine who is at high risk to contract this deadly cancer, which may lead to better survival rates and the development of chemopreventive interventions.

"With this research, we were able to find a novel specific gene and a functional variation that are independent of the previous suspects. We found a 'why' to many of the questions about genetic causes of bladder cancer," said Xifeng Wu, M.D., Ph.D., professor in M. D. Anderson's Department of Epidemiology, Division of Cancer Prevention and Population Sciences, the lead and corresponding author of this publication. "The neighboring genomic region has been identified previously as a possible problem for breast, prostate, colorectal and bladder cancer, but we didn't know why."

Genetic risk factors have been elusive

Bladder cancer is the fourth most common cancer in men in the United States. In this country, it is projected that more than 68,800 new cases will be diagnosed and approximately 14,400 people will die because of the disease this year.

Cigarette smoking and occupational exposure to certain chemicals are known risk factors, but almost one-third of people who get the disease have an inherited genetic susceptibility. People with first-degree relatives with bladder cancer have a 50 percent to 100 percent higher risk of getting the disease.

However, the exact genetic explanation for bladder cancer has remained elusive, and this study may have helped to solve some of the puzzles, Wu said.

Prostate stem cell antigen (PSCA) is over-expressed in prostate cancer, and the level of PSCA increases with tumor grade and stage. However, the cellular function of PSCA in prostate cancer is not clear.

While PSCA's involvement in bladder cancer had been suggested previously, this is the first time it has been linked definitively.

6,667 cases, 39,590 controls

The first step of this study was a genomewide evaluation of 969 people with bladder cancer and 954 healthy people. To validate their findings, researchers evaluated patients from three additional U.S. and nine European groups, for a total of 6,667 people with bladder cancer and 39,590 healthy people.

A variant in the PSCA gene (rs2294008) was associated consistently with bladder cancer. Researchers then re-examined the PSCA gene region and found rs2294008 was the only common missense genetic variation in the PSCA region. A missense mutation occurs at a single point in the genome and swaps one amino acid for another in a protein.

Low levels of PSCA were found in the bladders of healthy people, but it was over-produced in the majority of patients with bladder cancer. Previous reports suggest that measurement of PSCA in urine may be a simple and accurate marker to help diagnose bladder cancer.

Potential for chemoprevention, treatment

Next, the group plans to fully analyze data jointly with other participating centers, possibly uncovering additional genes for bladder cancer.

Wu said she hopes the group's findings will help targeted bladder cancer prevention efforts.

"When we've identified all the genes that are linked to bladder cancer, we plan to develop a web-based tool so physicians can calculate accurately and easily a patient's risk of getting the disease," she said. "Early identification of risk may help save lives with chemoprevention or early treatment."

In addition, Wu's team is working with a hospital in Spain to compare findings of the study to clinical outcomes. "How do these genes affect survival, recurrence and progression of bladder cancer?" she said. "As we get more information, we hope to be able to predict clinical outcomes and optimize therapy."

Other M. D. Anderson authors on the study included Yuanqing Ye, Ph.D., Jie Lin, Ph.D., David W. Chang, Ph.D., Christopher I. Amos, Ph.D., and Jian Gu, Ph.D., of the Department of Epidemiology; Colin P. Dinney, M.D., and H. Barton Grossman, M.D., of the Department of Urology; Bogdan Czerniak, M.D., Ph.D., and Tadeusz Majewski, M.D., Ph.D., of the Department of Pathology; and Gordon B. Mills, M.D., Ph.D., and Katherine S. Hale, Ph.D., of the Department of Systems Biology.

This study was supported by grants from the National Cancer Institute and funding from M. D. Anderson's Kleberg Center for Molecular Markers.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For four of the past six years, including 2008, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>