Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt Scientists Discover That Chemical Element Bromine Is Essential To Human Life

10.06.2014

Twenty-seven chemical elements are considered to be essential for human life. Now there is a 28th – bromine.

In a paper published Thursday by the journal Cell, Vanderbilt University researchers establish for the first time that bromine, among the 92 naturally-occurring chemical elements in the universe, is the 28th element essential for tissue development in all animals, from primitive sea creatures to humans.

“Without bromine, there are no animals. That’s the discovery,” said Billy Hudson, Ph.D., the paper’s senior author and Elliott V. Newman Professor of Medicine.

The researchers, led by co-first authors Scott McCall, Christopher Cummings, Ph.D., and Gautam (Jay) Bhave, M.D., Ph.D., showed that fruit flies died when bromine was removed from their diet but survived when bromine was restored.

... more about:
»Biology »Cell »Human »Medical »Medicine »bromine »defective »enzyme

This finding has important implications for human disease. “Multiple patient groups … have been shown to be bromine deficient,” said McCall, an M.D./Ph.D. student. Bromine supplementation may improve the health of patients on dialysis or total parenteral nutrition (TPN), for example.

The report is the latest in a series of landmark papers by the Vanderbilt group that have helped define how collagen IV scaffolds undergird the basement membrane of all tissues, including the kidney’s filtering units.

Hudson said the foundation for the discovery about bromine goes back 30 years when he was at the University of Kansas Medical School.

Curiosity about two rare kidney diseases led, in the mid-1980s, to the discovery of two previously unknown proteins that twist around each other to form the triple-helical collagen IV molecule, like cables supporting a bridge. Disease results when these cables are defective or damaged.

Hudson moved to Vanderbilt in 2002.

In 2009, colleagues led by Roberto Vanacore, Ph.D., assistant professor of Medicine, reported in Science magazine the discovery of a novel sulfilimine bond between a sulfur atom and a nitrogen atom that acts like a “fastener” to connect the collagen IV molecules forming scaffolds for cells.

A defective bond may trigger the rare auto-immune disease Goodpasture’s syndrome. The disorder is named for the late Vanderbilt pathologist and former medical school dean Ernest Goodpasture, M.D., who was best known for his contribution to the development of vaccines.
That discovery led to simple question: how is the bond formed?

In 2012, Bhave, assistant professor of Medicine, Cummings, now a postdoctoral fellow, and Vanacore led the effort that found the answer -- the enzyme peroxidasin.

Conserved across the animal kingdom, peroxidasin also may play a role in disease. An overactive enzyme may lead to excessive deposition of collagen IV and thickening of the basement membrane, which can impair kidney function, they reported in the journal Nature Chemical Biology.

In the current study, to which Vanacore and Andrea Page-McCaw, Ph.D., associate professor of Cell and Developmental Biology, also contributed, the scientists demonstrated the unique and essential role for ionic bromide as a “co-factor,” enabling peroxidasin to form the sulfilimine bond.

The chemical element bromine is thus “essential for animal development and tissue architecture,” they report.

The study was supported in part by National Institutes of Health grants DK018381, DK100094, GM007347, DK097306 and GM073883.

Craig Boerner | newswise
Further information:
http://www.vanderbilt.edu

Further reports about: Biology Cell Human Medical Medicine bromine defective enzyme

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>