Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison scientists create super-strong collagen

13.01.2010
A team of University of Wisconsin-Madison researchers has created the strongest form of collagen known to science, a stable alternative to human collagen that could one day be used to treat arthritis and other conditions that result from collagen defects.

"It's by far the most stable collagen ever made," says Ron Raines, a University of Wisconsin-Madison professor of chemistry and biochemistry who led the study, published in the Jan. 12 issue of the Proceedings of the National Academy of Sciences.

Collagen is the most abundant protein in the human body, forming strong sheets and cables that support the structure of skin, internal organs, cartilage and bones, as well as all the connective tissue in between. For decades, doctors have used collagen from cows to treat serious burns and other wounds in humans despite the risk of tissue rejection associated with cross-species transplants.

In 2006, Raines' team figured out how to make human collagen in the lab, creating collagen molecules longer than any found in nature. Now, with funding from the National Institutes of Health, the researchers have taken this line of inquiry one step further, creating a form of super-strong collagen that may one day help millions. Raines says this artificial collagen holds promise as a therapy for conditions such as arthritis, which is caused by a breakdown of the body's natural collagen and affects more than 46 million Americans.

To make the new form of collagen, Raines' team substituted two-thirds of the protein's regular amino acids with less-flexible versions that stiffened the overall structure of the protein and helped it hold its form. "The breakthrough of this approach was the use of rigid analogues that have shapes similar to [the shapes the natural amino acids take] in the folded, functional form of the protein," explains Raines.

The resulting collagen holds together at temperatures far above what it takes for natural collagen to fall apart. And although it's built largely from amino acids that aren't found in nature, X-ray crystallography confirms that the three-dimensional structure of the lab-made collagen is indistinguishable from that of natural collagen, according to UW-Madison bacteriologist Katrina Forest, a co-author of the study.

"This hyper-stable collagen is really a testament to the power of modern protein chemistry," says Raines.

Nicole Miller, 608-262-3636, nemiller2@wisc.edu

Ron Raines | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>