Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ute Scholl discovers genetic cause of rare high blood pressure syndrome

06.02.2018

Twenty-five years ago, an unusual inherited form of high blood pressure was first described in an Australian family. Its genetic cause, however, had remained elusive. Using modern sequencing methods, an international research team led by BIH Johanna Quandt Professor Ute Scholl has succeeded in detecting mutations in a new disease gene (CLCN2) – present in this family and seven others – that are responsible for the development of a familial form of hyperaldosteronism. The findings from this study have been published in the scientific journal Nature Genetics.

More than a billion people worldwide suffer from high blood pressure (hypertension). Prolonged hypertension damages blood vessels, which can result in damage to the heart, the kidneys, and the brain. Possible consequences include heart attack, kidney failure, and stroke. Besides obesity, salt consumption, and alcohol intake, genetic factors play an important role in the development of hypertension.


In the familial form of hyperaldosteronism, a gene mutates that carries the information for the construction of the CIC-2 channel in the cell membrane.

Graphic: Ute Scholl

In some rare cases, familial hypertension is caused by mutations within single genes. These genes play important roles in blood pressure determination, and mutations typically cause early-onset hypertension, even in young children and adolescents. Ute Scholl and a team of scientists from the United States and Australia have now identified a new hypertension disease gene.

The study focused on a particular and very rare form of high blood pressure, known as familial hyperaldosteronism type II. This inherited disease causes the adrenal gland to produce too much aldosterone – a hormone that regulates how much salt and water the kidneys retain in the body. Too much of this hormone results in high blood pressure.

Mutation in the CLCN2 gene alters blood pressure regulation

Familial hyperaldosteronism type II was first described in an Australian family 25 years ago. The research team investigated this family along with other patients suffering from hyperaldosteronism in childhood and adolescence. A total of eight families, including the large Australian family, showed mutations in a gene that had not previously been associated with blood pressure regulation.

The CLCN2 gene carries information for building a channel in the cell membrane through which chloride ions can pass. In specific cells of the adrenal gland, these chloride channels regulate membrane voltage and aldosterone production. Gene mutations in patients with familial hyperaldosteronism cause changes in the membrane voltage and result in the overproduction of aldosterone, which raises blood pressure.

Study results enable early detection and treatment

“Patients with suspected familial hyperaldosteronism and their relatives will benefit from our findings,” explains the study’s lead author Ute Scholl, “because in the future they can be screened for mutations in the CLCN2 gene.” Study patients also responded to medication that is already used in the treatment of hyperaldosteronism.

“For families with familial hyperaldosteronism type II, identifying the genetic cause doesn’t just help with early detection of the disease, it also enables targeted treatment,” says Scholl. As BIH Johanna Quandt Professor, Ute Scholl and her research group will now use the results from the study to delve deeper into their research at the Berlin Institute of Health. “We plan to further investigate the role of chloride channels in the adrenal gland,” says Scholl. “We also try to better understand the regulation of these channels in order to develop improved treatment strategies.”

International collaborations led to the breakthrough

The publication in Nature Genetics* is the outcome of an international research collaboration. Michael Stowasser and Richard Gordon’s group at the University of Queensland in Australia identified and characterized the large Australian family. This made it possible for Ute Scholl’s group to pinpoint CLCN2 as the candidate gene.

The researchers were then able to confirm their findings using a large cohort from Richard P. Lifton’s laboratory at the Yale School of Medicine in the United States. The electrophysiological work was conducted in Christoph Fahlke’s laboratory at Forschungszentrum Jülich.

Ute Scholl holds one of three BIH Johanna Quandt Professorships at the Berlin Institute of Health and Charité – Universitätsmedizin Berlin. This limited-term W2 professorship is funded by Stiftung Charité.

Ute I. Scholl, Gabriel Stölting, Julia Schewe, Anne Thiel, Hua Tan, Carol Nelson-Williams, Alfred A. Vichot, Sheng Chih Jin, Erin Loring, Verena Untiet, Taekyeong Yoo, Jungmin Choi, Shengxin Xu, Aihua Wu, Marieluise Kirchner, Philipp Mertins, Lars C. Rump, Ali Mirza Onder, Cory Gamble, Daniel McKenney, Robert W. Lash, Deborah P. Jones, Gary Chune, Priscila Gagliardi, Murim Choi, Richard Gordon, Michael Stowasser, Christoph Fahlke & Richard P. Lifton. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nature Genetics, 2018. DOI: 10.1038/s41588-018-0048-5

Saskia Blank | idw - Informationsdienst Wissenschaft
Further information:
http://www.bihealth.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>