Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ute Scholl discovers genetic cause of rare high blood pressure syndrome

06.02.2018

Twenty-five years ago, an unusual inherited form of high blood pressure was first described in an Australian family. Its genetic cause, however, had remained elusive. Using modern sequencing methods, an international research team led by BIH Johanna Quandt Professor Ute Scholl has succeeded in detecting mutations in a new disease gene (CLCN2) – present in this family and seven others – that are responsible for the development of a familial form of hyperaldosteronism. The findings from this study have been published in the scientific journal Nature Genetics.

More than a billion people worldwide suffer from high blood pressure (hypertension). Prolonged hypertension damages blood vessels, which can result in damage to the heart, the kidneys, and the brain. Possible consequences include heart attack, kidney failure, and stroke. Besides obesity, salt consumption, and alcohol intake, genetic factors play an important role in the development of hypertension.


In the familial form of hyperaldosteronism, a gene mutates that carries the information for the construction of the CIC-2 channel in the cell membrane.

Graphic: Ute Scholl

In some rare cases, familial hypertension is caused by mutations within single genes. These genes play important roles in blood pressure determination, and mutations typically cause early-onset hypertension, even in young children and adolescents. Ute Scholl and a team of scientists from the United States and Australia have now identified a new hypertension disease gene.

The study focused on a particular and very rare form of high blood pressure, known as familial hyperaldosteronism type II. This inherited disease causes the adrenal gland to produce too much aldosterone – a hormone that regulates how much salt and water the kidneys retain in the body. Too much of this hormone results in high blood pressure.

Mutation in the CLCN2 gene alters blood pressure regulation

Familial hyperaldosteronism type II was first described in an Australian family 25 years ago. The research team investigated this family along with other patients suffering from hyperaldosteronism in childhood and adolescence. A total of eight families, including the large Australian family, showed mutations in a gene that had not previously been associated with blood pressure regulation.

The CLCN2 gene carries information for building a channel in the cell membrane through which chloride ions can pass. In specific cells of the adrenal gland, these chloride channels regulate membrane voltage and aldosterone production. Gene mutations in patients with familial hyperaldosteronism cause changes in the membrane voltage and result in the overproduction of aldosterone, which raises blood pressure.

Study results enable early detection and treatment

“Patients with suspected familial hyperaldosteronism and their relatives will benefit from our findings,” explains the study’s lead author Ute Scholl, “because in the future they can be screened for mutations in the CLCN2 gene.” Study patients also responded to medication that is already used in the treatment of hyperaldosteronism.

“For families with familial hyperaldosteronism type II, identifying the genetic cause doesn’t just help with early detection of the disease, it also enables targeted treatment,” says Scholl. As BIH Johanna Quandt Professor, Ute Scholl and her research group will now use the results from the study to delve deeper into their research at the Berlin Institute of Health. “We plan to further investigate the role of chloride channels in the adrenal gland,” says Scholl. “We also try to better understand the regulation of these channels in order to develop improved treatment strategies.”

International collaborations led to the breakthrough

The publication in Nature Genetics* is the outcome of an international research collaboration. Michael Stowasser and Richard Gordon’s group at the University of Queensland in Australia identified and characterized the large Australian family. This made it possible for Ute Scholl’s group to pinpoint CLCN2 as the candidate gene.

The researchers were then able to confirm their findings using a large cohort from Richard P. Lifton’s laboratory at the Yale School of Medicine in the United States. The electrophysiological work was conducted in Christoph Fahlke’s laboratory at Forschungszentrum Jülich.

Ute Scholl holds one of three BIH Johanna Quandt Professorships at the Berlin Institute of Health and Charité – Universitätsmedizin Berlin. This limited-term W2 professorship is funded by Stiftung Charité.

Ute I. Scholl, Gabriel Stölting, Julia Schewe, Anne Thiel, Hua Tan, Carol Nelson-Williams, Alfred A. Vichot, Sheng Chih Jin, Erin Loring, Verena Untiet, Taekyeong Yoo, Jungmin Choi, Shengxin Xu, Aihua Wu, Marieluise Kirchner, Philipp Mertins, Lars C. Rump, Ali Mirza Onder, Cory Gamble, Daniel McKenney, Robert W. Lash, Deborah P. Jones, Gary Chune, Priscila Gagliardi, Murim Choi, Richard Gordon, Michael Stowasser, Christoph Fahlke & Richard P. Lifton. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nature Genetics, 2018. DOI: 10.1038/s41588-018-0048-5

Saskia Blank | idw - Informationsdienst Wissenschaft
Further information:
http://www.bihealth.org

More articles from Life Sciences:

nachricht Blood test shows promise for early detection of severe lung-transplant rejection
23.01.2019 | NIH/National Heart, Lung and Blood Institute

nachricht Evolution of signaling molecules opens door to new sepsis therapy approaches
23.01.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A New Home for Optical Solitons

23.01.2019 | Physics and Astronomy

Graphene and related materials safety: human health and the environment

23.01.2019 | Materials Sciences

Blood test shows promise for early detection of severe lung-transplant rejection

23.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>