Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT professor uncovers clues into how viruses jump from hosts

06.08.2010
Researcher finds that cross-species transmission may have less to do with virus mutation and contact rates and more to do with host similarity

HIV-AIDS. SARS. Ebola. Bird Flu. Swine Flu. Rabies. These are emerging infectious diseases where the viruses have jumped from one animal species into another and now infect humans. This is a phenomenon known as cross-species transmission (CST) and scientists are working to determine what drives it. Gary McCracken, a professor at the University of Tennessee, Knoxville, and department head in Ecology and Evolutionary Biology, is one of those scientists and has made a groundbreaking discovery into how viruses jump from host to host.

His article, "Host Phylogeny Constrains Cross-Species Emergence and Establishments of Rabies Virus in Bats," will appear in the Aug. 6 edition of Science and will be featured on the issue's cover.

It has been a long-held belief that rapid mutation is the main factor that allows viruses to overcome host-specific barriers in cellular, molecular or immunological defenses. Therefore, it has been argued that viruses emerge primarily between species with high contact rates.

McCracken and his colleagues now report that CST may have less to do with virus mutation and contact rates and more to do with host similarity.

"That innate similarity in the defenses of closely related species may favor virus exchange by making it easier for natural selection to favor a virus' ability to infect new hosts," McCracken explained.

McCracken performed his research with former UT Knoxville Ph.D. student Amy Turmelle who now works with the Centers for Disease Control (CDC) and Maarten J. Vonhof, a former post-doctoral scholar at UT Knoxville, who is now with Western Michigan University. Other colleagues include CDC Rabies Team Members Ivan Kuzmin, Charles Rupprecht and Daniel Streicker, who is also with the University of Georgia.

The team made their discovery by analyzing hundreds of rabies viruses in 23 species of bats. In the United States, there are at least 45 different species of bats and many different strains of rabies. Not coincidentally, the CDC collects rabid bats after humans or their pets or livestock may have been exposed to the virus -- adding nearly 2,000 bats annually to its database. McCracken and his colleagues used this database to document the cases in which a rabies virus jumped from one species of bat to another. They verified the cases by genotyping both the viruses and the bats.

The researchers documented over 200 examples of CSTs and analyzed the best explanations for CSTs, such as geographic range, behavior, ecology and genetic relatedness. The study found that the majority of viruses from cross-species infections were tightly nested among genetically similar bat species.

"It turns out, the most important factor in cross-species transmission is how closely related the bat species are," McCracken said. "Our study demonstrates that rapid evolution can be insufficient to overcome phylogenetic barriers at two crucial stages of viral emergence: initial infection and sustained transmission."

This discovery may have significant implications for public health authorities as they try to track where the next infectious disease will emerge. The team's research provides a model for how such diseases transfer from host to host.

"Although CST events are the source of infectious diseases that kill millions of people each year, the natural reservoirs of viruses in wild animals and how they cross species barriers are poorly known and difficult to observe. In this study, rabies in bats serves as a model to understand events that are critical to public health concerns worldwide," McCracken said.

Whitney Holmes | EurekAlert!
Further information:
http://www.utk.edu

Further reports about: CDC CST Ebola Flu Outbreak HIV-AIDS SARS Swine flu evolutionary biology infectious disease rabies

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>