Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using sunlight to the max

19.06.2017

Materials called transition-metal carbides have remarkable properties that open new possibilities in water desalination and wastewater treatment. A KAUST team has found compounds of transition metals and carbon, known as a MXenes but pronounced "maxenes," can efficiently evaporate water using power supplied by the sun1.

Renyuan Li, a Ph.D. student at KAUST, has investigated a MXene in which titanium and carbon combine with the formula Ti3C2. "This is a very exciting material," said Associate Professor Peng Wang, Li's supervisor at the KAUST Water Desalination and Reuse Center.


Membrances of MXene have potential for water purification.

Credit: © 2017 KAUST

Wang explains his excitement comes from their finding that Ti3C2 can trap the energy of sunlight to purify water by evaporation with an energy efficiency that is "state of the art." He says this clearly justifies more research toward practical applications.

Other researchers had explored the ability of MXenes to act as electromagnetic shielding materials due to their ability to absorb wavelengths of electromagnetic radiation beyond the visible range. So the KAUST discovery began with a simple question. "We decided to investigate, what is the interaction with this MXene and sunlight?" Wang explained. With his group's focus on desalination technology, using the sun's energy to convert water into steam was an obvious target.

The KAUST team's first observation was that Ti3C2 converts the energy of sunlight to heat with 100% efficiency. Also important, however, was that the sophisticated system developed during this research to measure light-to-heat conversion showed that various other materials, including carbon nanotubes and graphene, also achieved almost perfectly efficient conversion.

"I suggest the focus of the field should now move away from finding new photothermal materials toward finding applications for the many perfect ones we now have," said Wang.

To investigate MXene's possibilities in water purification, the researchers then fabricated a thin and flexible Ti3C2 membrane incorporating a polystyrene heat barrier to prevent the heat energy from escaping. This created a system that could float on water and evaporate some of the water with 84% efficiency at the illumination levels of natural sunlight.

For Wang, the next challenge is how to move from this basic research finding toward practical applications. Wang hopes to break through what he calls "the 85% efficiency barrier," taking photo-thermal purification of water into new territory.

In addition to maximizing the system's light-trapping capacity, the researchers want to investigate ways to capture the water vapor and yield a complete water purifying process. Wang is already in talks with one potential industrial partner.

Media Contact

Michelle D'Antoni
michelle.dantoni@kaust.edu.sa

http://kaust.edu.sa/ 

Michelle D'Antoni | EurekAlert!

More articles from Life Sciences:

nachricht How our cellular antennas are formed
22.01.2019 | Université de Genève

nachricht Bifacial Stem Cells Produce Wood and Bast
22.01.2019 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

How our cellular antennas are formed

22.01.2019 | Life Sciences

Proposed engineering method could help make buildings and bridges safer

22.01.2019 | Architecture and Construction

Bifacial Stem Cells Produce Wood and Bast

22.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>