Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using organisms to decontaminate soil


The German Ministry of Education and Research is funding a long-term soil remediation project run by the University of Jena. The project is to investigate and test biological methods for remediating soils contaminated with metal at the former uranium mining site near Ronneburg, Thuringia, to renew the soils, and to make them available for land use.

Decontaminating the legacy of uranium mining in the GDR

Researchers from University of Jena are looking for bacteria - in the picture: Petri dish with the bacterium Streptomyces lividans - that fix heavy metals dissolved in the soil as biominerals.

Image: Jan-Peter Kasper/FSU

“Even today, 30 years after its end, the GDR is still ranked the third largest producer of uranium in the world. In eastern Thuringia and western Saxony, for example, more than 210,000 tonnes of the radioactive element were mined,” says the microbiologist Prof. Erika Kothe of the University of Jena. She is leading the project together with the geoscientist Prof. Thorsten Schäfer.

Following the uranium mining of the past, in the project, a possible re-use of the former mining areas is to be tested. Essentially, the soils there are still contaminated with heavy metals; acids are formed which dissolve the toxic metals and can thus pose a hazard to the groundwater.

In the former mining area near Ronneburg, which is nowadays managed by the government-owned Wismut GmbH, four test sites will be examined within the project. During the past four years, the University’s geoscientists and microbiologists have been examining biocompatible methods for a long-term land use there, in particular for biomass production.

Based on the successes of the first funding phase, the government-funded project USER2 is about to focus on implementation of heavy metal land farming for sustainable landscape design and production of renewable energies from radionuclide-contaminated areas.

For example, the research teams had planted trees, which appeared to grow in spite of the pollution, and may serve as renewable energy. Mycorrhiza, e.g. fly agarics of bay boletes, supply the trees with water and nutrient salts. In turn, the trees supply the fungi with products from photosynthesis.

“Our goal is to find the best combination of fungi and trees,” says Erika Kothe. “The heavy metals should remain in the mushrooms or – better still – soil bacteria should convert them into biominerals.” To remove the toxins from the soils, the teams use an undergrowth.

Bioremediation of soil and re-use

To remove the metals from the soil, the team plants herbaceous plants such as red fescue or rye. “The herbaceous plants remove the toxins from the soil. They can then be harvested, incinerated, and the ashes safely deposited,” explains Kothe.

“This way, the soil is improved in the long-term without major technical effort. Moreover, the trees planted can be burnt or their lignocellulose can be chemically converted into biofuel.” In addition, the herbaceous undergrowth protects the soil against erosion. Like the trees, the undergrowth, too, can benefit from soil bacteria and fungi provided that suitable microbes can be found.

During this new 3-year-long project, the interdisciplinary team wants to continue with the various trial plantings on site, curb soil erosion, and take stock. Apart from these, they will study the transport of heavy metals in the form of nanoparticles in water. An integral part of the project are students who conduct annual intensive measurements and analyses of the plants, fungi, and soil bacteria.

This one-week visit to the site in the fifth semester is part of the bachelor's programme in biogeosciences at the University of Jena. Yet students are introduced to the test site even at an earlier stage. Each year there is an excursion to Ronneburg being part of the lecture on bio-geo interactions during their first semester.

Studying biogeosciences at the Friedrich Schiller University Jena

Anyone interested in this topic can study biogeosciences at the University in Jena. If you want to apply for the bachelor’s programme in biogeosciences (, you should do so by 15 September 2019. The University also offers a master’s programme ( on the same subject.

Wissenschaftliche Ansprechpartner:

Prof. Dr Erika Kothe
Institute of Microbiology of Friedrich Schiller University Jena
Neugasse 25
07743 Jena, Germany
Phone: +49 (0)3641 / 949291
Email: erika.kothe[at]

Prof. Dr Thorsten Schäfer
Institute of Geosciences of Friedrich Schiller University Jena
Burgweg 11
07749 Jena, Germany
Phone: +49 (0)3641 / 948640
Email: thorsten.schaefer[at]

Marco Körner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Detect cell changes faster
27.02.2020 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Preserved and fresh – Neutrons show details of the freeze drying process
27.02.2020 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

Latest News

Explained: Why water droplets 'bounce off the walls'

27.02.2020 | Physics and Astronomy

Existing drugs may offer a first-line treatment for coronavirus outbreak

27.02.2020 | Health and Medicine

Rare lizard fossil preserved in amber

27.02.2020 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>