Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC scientists find a cheaper way to light up OLED screens

08.02.2019

Iridium has been generating light and color for organic LED (OLED) screens on smartphones and TVs, but it is the rarest metal on Earth; USC Dornsife scientists find a surprising, cheaper solution: A copper compound

USC Dornsife chemists have found a cheaper way to light up smartphone and TV screens, which could save manufacturers and consumers money without affecting visual quality.


Chemist Mark E. Thompson holds new copper-based LEDs invented by him and a team of chemists that could be a cheaper option for TV and smartphone screens to produce the color -- including blue -- and light. Right now, the industry relies on iridium, an expensive precious metal, for LED light and color.

Credit: Mark E. Thompson, USC Dornsife

Copper is the answer, according to their study, published Feb. 8 in the journal Science.

"The current technology that is in every Samsung Galaxy phone, high-end Apple iPhone and LG TV relies on iridium compounds for the colors and light on OLED screens," says Mark E. Thompson, a chemist at USC Dornsife College of Letters, Arts and Sciences and the Ray. R. Irani Chairman of the Occidental Petroleum Corporation Chair in Chemistry.

... more about:
»COPPER »LCD »LED »OLED »OLEDs »USC »iridium »light emission

"We have been using iridium because you get a highly efficient light emission, but it is the rarest naturally-occurring element on Earth," Thompson says. "One of our challenges has been to come up with an alternative that is more abundant."

Prior attempts to generate a copper-based OLED failed. The copper complexes in those studies had weaker structures. The molecules were unstable, with shorter lifetimes than the iridium compounds.

Iridium's link to dinosaurs

Copper definitely solves the problem of availability since it is a plentiful metal worldwide. Iridium, on the other hand, is found in only a few places -- mostly South Africa and parts of Asia.

The most widely-accepted hypothesis that explains iridium's scarcity and its origins is that it traveled here on a meteor -- the same one that wiped out the dinosaurs 65 million years ago.

Unless another meteor like that hits Earth, iridium will continue to dwindle in supply. Demand for it is only increasing as smartphones, TVs and other devices that feature OLED screens gain popularity.

OLEDs have come to replace LED LCD screens. In an OLED screen, each pixel generates light, while in the LCD screens, pixels are illuminated by an LED backlight.

Blue chemistry

Besides its scarcity, iridium has another drawback for OLED technology that has perplexed chemists for more than two decades: weaker molecules for generating blue light.

When the molecules from the iridium compounds are excited, they generate two of the OLED screen's primary colors -- red and green -- very efficiently, quickly and in devices that give very long operational lifetimes, says Thompson, whose lab engineered the iridium-based red and green molecules.

The third requisite color, blue, has been the bane of OLED technology because blue emissive OLEDs have a short lifetime. Thompson explained that the bonds within the blue molecules tend to break down. Blue molecules also require more electricity than the green and red molecules to energize them. Since blue is among the primary colors for OLED, its poor performance can affect a range of colors that you see on a screen that contain any blue.

Thompson's team may have solved that, too, with their new copper complex -- a more rigid molecular complex than the prior, failed types of copper compounds, which were weaker. The new compound's rate of light emission also matches iridium's, so the energy is converted efficiently into light and color, the chemists found.

"Our paper lays out the basic design rules for obtaining iridium-like emission efficiencies out of copper, with colors ranging from blue to green and yellow," said Rasha Hamze, the study's lead author and a USC Dornsife alumna who recently began working for Universal Display Corporation.

"Achieving efficient blue emission out of copper compounds opens up entirely new possibilities for tackling the problem of short lifetimes in blue devices."

The team at USC has submitted a patent application for their copper compound.

Thompson says that next, he wants to see if these copper compounds could also lead to the creation of more energy-efficient lighting.

###

Support for the study

In addition to Thompson and Hamze, the study's co-authors include USC Dornsife chemists Daniel Sylvinson, Moonchul Jung, Jose Cardenas, Ralf Haiges and Peter I. Djurovich, as well as researchers at the joint laboratory of University of California, San Diego-Le Centre National de la Recherche Scientifique (CNRS): Jesse L. Peltier, Rodolphe Jazzar, Michele Soleilhavoup, and Guy Bertrand.

The work was funded by the Universal Display Corporation, where Hamze now works, and National Science Foundation grants DGE-1650112 (for Peltier) and CHE-1661518.

Hamze, Jung, Djurovich and Thompson have disclosed a competing interest as they are listed as inventors on a pending patent for the technology disclosed in the study. Thompson also holds a financial interest in Universal Displays Corporation.

Media Contact

Emily F Gersema
gersema@usc.edu
213-361-6730

 @USC

http://www.usc.edu 

Emily F Gersema | EurekAlert!

Further reports about: COPPER LCD LED OLED OLEDs USC iridium light emission

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>