Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC scientists find a cheaper way to light up OLED screens

08.02.2019

Iridium has been generating light and color for organic LED (OLED) screens on smartphones and TVs, but it is the rarest metal on Earth; USC Dornsife scientists find a surprising, cheaper solution: A copper compound

USC Dornsife chemists have found a cheaper way to light up smartphone and TV screens, which could save manufacturers and consumers money without affecting visual quality.


Chemist Mark E. Thompson holds new copper-based LEDs invented by him and a team of chemists that could be a cheaper option for TV and smartphone screens to produce the color -- including blue -- and light. Right now, the industry relies on iridium, an expensive precious metal, for LED light and color.

Credit: Mark E. Thompson, USC Dornsife

Copper is the answer, according to their study, published Feb. 8 in the journal Science.

"The current technology that is in every Samsung Galaxy phone, high-end Apple iPhone and LG TV relies on iridium compounds for the colors and light on OLED screens," says Mark E. Thompson, a chemist at USC Dornsife College of Letters, Arts and Sciences and the Ray. R. Irani Chairman of the Occidental Petroleum Corporation Chair in Chemistry.

... more about:
»COPPER »LCD »LED »OLED »OLEDs »USC »iridium »light emission

"We have been using iridium because you get a highly efficient light emission, but it is the rarest naturally-occurring element on Earth," Thompson says. "One of our challenges has been to come up with an alternative that is more abundant."

Prior attempts to generate a copper-based OLED failed. The copper complexes in those studies had weaker structures. The molecules were unstable, with shorter lifetimes than the iridium compounds.

Iridium's link to dinosaurs

Copper definitely solves the problem of availability since it is a plentiful metal worldwide. Iridium, on the other hand, is found in only a few places -- mostly South Africa and parts of Asia.

The most widely-accepted hypothesis that explains iridium's scarcity and its origins is that it traveled here on a meteor -- the same one that wiped out the dinosaurs 65 million years ago.

Unless another meteor like that hits Earth, iridium will continue to dwindle in supply. Demand for it is only increasing as smartphones, TVs and other devices that feature OLED screens gain popularity.

OLEDs have come to replace LED LCD screens. In an OLED screen, each pixel generates light, while in the LCD screens, pixels are illuminated by an LED backlight.

Blue chemistry

Besides its scarcity, iridium has another drawback for OLED technology that has perplexed chemists for more than two decades: weaker molecules for generating blue light.

When the molecules from the iridium compounds are excited, they generate two of the OLED screen's primary colors -- red and green -- very efficiently, quickly and in devices that give very long operational lifetimes, says Thompson, whose lab engineered the iridium-based red and green molecules.

The third requisite color, blue, has been the bane of OLED technology because blue emissive OLEDs have a short lifetime. Thompson explained that the bonds within the blue molecules tend to break down. Blue molecules also require more electricity than the green and red molecules to energize them. Since blue is among the primary colors for OLED, its poor performance can affect a range of colors that you see on a screen that contain any blue.

Thompson's team may have solved that, too, with their new copper complex -- a more rigid molecular complex than the prior, failed types of copper compounds, which were weaker. The new compound's rate of light emission also matches iridium's, so the energy is converted efficiently into light and color, the chemists found.

"Our paper lays out the basic design rules for obtaining iridium-like emission efficiencies out of copper, with colors ranging from blue to green and yellow," said Rasha Hamze, the study's lead author and a USC Dornsife alumna who recently began working for Universal Display Corporation.

"Achieving efficient blue emission out of copper compounds opens up entirely new possibilities for tackling the problem of short lifetimes in blue devices."

The team at USC has submitted a patent application for their copper compound.

Thompson says that next, he wants to see if these copper compounds could also lead to the creation of more energy-efficient lighting.

###

Support for the study

In addition to Thompson and Hamze, the study's co-authors include USC Dornsife chemists Daniel Sylvinson, Moonchul Jung, Jose Cardenas, Ralf Haiges and Peter I. Djurovich, as well as researchers at the joint laboratory of University of California, San Diego-Le Centre National de la Recherche Scientifique (CNRS): Jesse L. Peltier, Rodolphe Jazzar, Michele Soleilhavoup, and Guy Bertrand.

The work was funded by the Universal Display Corporation, where Hamze now works, and National Science Foundation grants DGE-1650112 (for Peltier) and CHE-1661518.

Hamze, Jung, Djurovich and Thompson have disclosed a competing interest as they are listed as inventors on a pending patent for the technology disclosed in the study. Thompson also holds a financial interest in Universal Displays Corporation.

Media Contact

Emily F Gersema
gersema@usc.edu
213-361-6730

 @USC

http://www.usc.edu 

Emily F Gersema | EurekAlert!

Further reports about: COPPER LCD LED OLED OLEDs USC iridium light emission

More articles from Life Sciences:

nachricht New self-assembled monolayer is resistant to air
22.01.2020 | University of Groningen

nachricht Mosquitoes are drawn to flowers as much as people -- and now scientists know why
22.01.2020 | University of Washington

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

New self-assembled monolayer is resistant to air

22.01.2020 | Life Sciences

Ultrafast camera takes 1 trillion frames per second of transparent objects and phenomena

22.01.2020 | Power and Electrical Engineering

Mosquitoes are drawn to flowers as much as people -- and now scientists know why

22.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>