Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers identify key mechanism that regulates the development of stem cells into neurons

11.11.2008
Findings provide insight into potential therapies for neurodegenerative disorders and cancers

Researchers at the University of Southern California (USC) have identified a novel mechanism in the regulation and differentiation of neural stem cells.

Researchers found that the protein receptor Ryk has a key role in the differentiation of neural stem cells, and demonstrated a signaling mechanism that regulates neuronal differentiation as stem cells begin to grow into neurons. The study will be published in the Nov. 11 issue of the journal Developmental Cell, and is now available online.

The findings could have important implications for regenerative medicine and cancer therapies, says Wange Lu, Ph.D., assistant professor of biochemistry and molecular biology at the Keck School of Medicine of USC, and the principal investigator on the study.

"Neural stem cells can potentially be used for cell-replacement therapy for neurodegenerative diseases such as Alzheimer's and Parkinson's Disease, as well as spinal cord injury," Lu says. "Knowledge gained from this study will potentially help to generate neurons for such therapy. This knowledge can also be used to inhibit the growth of brain cancer stem cells."

During brain development, neural stem cells respond to the surrounding environment by either proliferation or differentiation, but the molecular mechanisms underlying the development of neural stem cells and neurons are unclear, Lu notes.

Ryk functions as a receptor of Wnt proteins required for cell-fate determination, axon guidance and neurite outgrowth in organisms. Researchers at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC analyzed sections of the forebrain in animal model embryos to investigate Ryk's function in vivo.

They found that during neurogenesis, when neural stem cells start to grow into neurons, Ryk protein is cleaved and translocates to the cell nucleus to regulate neuronal differentiation.

This finding is extremely important for understanding the regulation of self-renewal and differentiation of neural stem cells, Lu says. Previous research has shown that Ryk functions as a receptor of Wnt proteins. However, the role of Ryk in neural stem cells and the molecular mechanism of Ryk signaling have not previously been known.

"This study will help in our efforts to produce nerve cells from embryonic stem cells, and may lead to the development of new strategies for the repair of the nervous system, using protein or small molecule therapeutic agents," says Martin Pera, Ph.D., director of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC.

Further research is needed to explore how Ryk regulates neuronal gene expression, Lu says. Researchers are now expanding their research to studies of differentiation of human embryonic stem cells into neural stem cells and neurons. These studies are very important for regenerative medicine and drug discovery for therapy of neurodegenerative diseases.

Meghan Lewit | EurekAlert!
Further information:
http://www.usc.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>