Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers identify alternate pathway that leads to palate development

13.08.2008
Signaling redundancy during palate and tooth formation can shed light to understanding cancer and cell biology in addition to cleft palate
(Los Angeles CA) Researchers at the University Of Southern California School Of Dentistry have uncovered another clue behind the causes of cleft palate and the process that leads to palate formation.

Cleft palate is one of the most common congenital birth defects, occurring in one out of every 700 live births. Clefts are more common in children of American Indian, Hispanic or Asian descent. While males are twice as likely to have a cleft lip, females are twice as likely to have a cleft palate.

But genes are not the only factor influencing the malformation says, Yang Chai, professor and director of the USC School of Dentistry's Center for Craniofacial Molecular Biology.

Researchers around the world believe that most cases of cleft lip and cleft palate are caused by an interaction of genetic and environmental factors; however, a specific cause may not be discovered for every baby.

Growth factors responsible for development, including palate and tooth formation, have more than one way to direct cells to make changes, says Chai.

The Discovery by the USC team is spotlighted in the August 12 issue of Development Cell.

Chai's group, which includes fellow CCMB researchers Xun Xu, Jun Han, Yoshihiro Ito and Pablo Bringas Jr., has been specifically scrutinizing the transforming growth factor beta (TGF-ß) family's role in palate formation problems.

The TGF- ßs are not only involved in palate formation, they plays an important development role all over the body. They work by binding to cell surface receptors and activating signaling molecules within the cell. These signaling molecules then travel to the nucleus, the cell's control center, and prompt DNA expression in order to spur changes in the cell.

"For instance, we've learned that when someone has a haploid insufficiency and is missing one copy of the TGF-ß gene, he or she is more vulnerable to environmental insults that can cause cleft palate, such as drugs, smoking and alcohol," Chai says.

Smad4 is one of the main signaling molecules used in the TGF-ß pathway during palate and tooth development. Chai says his team had initially hypothesized that since irregularities in the TGF-ß gene or its cell surface receptors sparked palate malformation in experimental mouse models, knocking out the Smad4 genes would do the same.

"We found that if we blocked TGF-ß or the receptors, a cleft palate develops," he says, "But when Smad4 was blocked, normal palate epithelium still covered the palatal shelf.

The team found that p38 MAPK (mitogen activated protein kinase) can take Smad4's place in the pathway and signal DNA expression to form the palate. Normally serving as a stress-response protein and activated by environmental insults, such as ultraviolet radiation on skin cells, p38 MAPK appears to act as a "spare tire" when Smad4 function is compromised, Chai says. When either one or the other is inactivated, the palate epithelium will still form properly, failing to form only if both signaling molecules are knocked out.

P38 MAPK isn't a perfect replacement for Smad4 during oral development –when Smad4 is nonfunctional, teeth only partially form – but the results are still surprising for a molecule better known for its roles during cancer, Chai says.

Further study could have big implications not only on congenital oral birth defects like cleft palate but also on malformations and diseases in tissues throughout the body, and patients could one day be able to take advantage of new genetic counseling and treatment methods stemming from this information, he hopes.

For new parents this latest development offers hope for the future. Those individuals with a family risk of either cleft lip or cleft palate can seek counseling early on and identify craniofacial teams that will assist them in following the best treatment plans for their child.

In addition, the discovery opens up other opportunities for researchers and clinicians.

"This information is useful not just for palate and teeth but also for cancer and cell biology in general," he says. "Ultimately, we have to be translational in order to make ourselves useful to patients."

Angelica Urquijo | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>