Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique

03.09.2014

Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets

Scientists, including University of Oregon chemist Geraldine Richmond, have tapped oil and water to create scaffolds of self-assembling, synthetic proteins called peptoid nanosheets that mimic complex biological mechanisms and processes.

The accomplishment -- detailed this week in a paper placed online ahead of print by the Proceedings of the National Academy of Sciences -- is expected to fuel an alternative design of the two-dimensional peptoid nanosheets that can be used in a broad range of applications. Among them could be improved chemical sensors and separators, and safer, more effective drug-delivery vehicles.

Study co-author Ronald Zuckermann of the Molecular Foundry at Lawrence Berkeley National Laboratory (LBNL) first developed these ultra-thin nanosheets in 2010 using an air-and-water combination.

"We often think of oil on water as something that is environmentally bad when, in fact, my group over the past 20 years has been studying the unique properties of the junction between water and oil as an interesting place for molecules to assemble in unique ways -- including for soaps and oil dispersants," said Richmond, who holds a UO presidential chair. "This study shows it is also a unique platform for making nanosheets."

Lead authors on the project were Ellen J. Robertson, a doctoral student in Richmond's lab at the time of the research, and Gloria K. Oliver, a postdoctoral researcher at LBNL. Robertson is now a postdoctoral researcher at LBNL.

Work in Richmond's lab helped to identify the mechanism behind the formation of the nanosheets at an oil-water interface.

"Supramolecular assembly at an oil-water interface is an effective way to produce 2D nanomaterials from peptoids because that interface helps pre-organize the peptoid chains to facilitate their self-interaction," said Zuckermann, a senior scientist at LBNL's Molecular Foundry in a news release. "This increased understanding of the peptoid assembly mechanism should enable us to scale-up to produce large quantities, or scale- down, using microfluidics, to screen many different nanosheets for novel functions."

Zuckermann and Richmond are the corresponding authors on the paper. Additional co-authors are Menglu Qian and Caroline Proulx, both of LBNL.

Like natural proteins, synthetic proteins fold and conform into structures that allow them to do specific functions. In his earlier work, Zuckermann's team at LBNL's Molecular Foundry discovered a technique to synthesize peptoids into sheets that were just a few nanometers thick but up to 100 micrometers in length. These were among the largest and thinnest free-floating organic crystals ever made, with an area-to-thickness equivalent of a plastic sheet covering a football field.

"Peptoid nanosheet properties can be tailored with great precision," Zuckermann says, "and since peptoids are less vulnerable to chemical or metabolic breakdown than proteins, they are a highly promising platform for self-assembling bio-inspired nanomaterials."

To create the new version of the nanosheets, the research team used vibrational sum frequency spectroscopy to probe the molecular interactions between the peptoids as they assemble at the oil-water interface. The work showed that peptoid polymers adsorbed to the interface are highly ordered in a way that is influenced by interactions between neighboring molecules.

The substitution of oil in place of air creates a raft of new opportunities for the engineering and production of peptoid nanosheets, the researchers said. The oil phase, for example, could contain chemical reagents, serve to minimize evaporation of the aqueous phase or enable microfluidic production.

###

The U.S. Department of Energy's Office of Basic Energy Sciences (grant DE-FG02-96ER45557) supported the research done in Richmond's UO lab. Work at the Molecular Foundry at LBNL was supported by the DOE (under contract DE-AC02-05CH11231) and the Defense Threat Reduction Agency (grant IACRO-B1144571).

Media Contact: Jim Barlow, director of science and research communications, 541-346-3481, jebarlow@uoregon.edu

Sources: Geraldine Richmond is traveling but can be reached through the media contact above; Ronald Zuckermann, Molecular Foundry at Lawrence Berkeley National Laboratory, 510-486-7091, rnzuckermann@lbl.gov

Jim Barlow | Eurek Alert!

Further reports about: LBNL Molecular Oregon nanomaterials peptoid properties proteins synthetic technique

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>