Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unusual hepatitis B virus discovered in shrews


Study by international research teams opens up new possibilities for research on the pathogenesis of viruses - Hepatitis B viruses have existed for millions of years

Infections with the hepatitis B virus (HBV) are one of the major global health problems. More than 240 million people worldwide are chronically infected with this virus and over 887,000 people die each year from the long-term consequences of the infection, such as liver cirrhosis and liver cancer.

New ways to study HBV pathogenesis are emerging from the discovery of an unusual HBV in shrews: this virus lacks an important immune modulator that is important for the chronification of infection. The teams of Prof. Dr. Dieter Glebe, head of the National Reference Centre for Hepatitis B and D Viruses at the Institute of Medical Virology of the Justus Liebig University Giessen (JLU), and Prof. Dr. Jan Felix Drexler, Institute of Virology of the Charité – Universitätsmedizin Berlin, together with other research groups from Germany and abroad, have now been able to prove this.

In addition, the working group of Prof. Dr. Joachim Geyer, Institute of Pharmacology and Toxicology at the Department of Veterinary Medicine at JLU, is involved in the study. They examined about 700 shrew samples from Europe and Africa. Their study also shows that HBV has existed in mammals for millions of years. The results were published in the journal Proceedings of the National Academy of Sciences.

Chronification of HBV infection, which occurs particularly frequently in newborns, childhood and adolescent infections and often remains undetected for decades, is one of the main characteristics of this viral disease. In all mammalian HBV known to date, including human HBV, the viral protein HBeAg enables the chronification of the infection.

This viral protein is produced during an infection. As an immunomodulator, it suppresses the body's specific immune defence against HBV, so that the infection cannot heal and becomes chronic – often with very high virus concentrations in the blood. In the absence of this viral protein, the body's immune system can successfully fight the starting infection.

The newly discovered HBV of shrews surprisingly do not have the genetic ability to produce the immunomodulator HBeAg. Despite the absence of HBeAg, the infected animals showed high levels of HBV virus in the blood. “This indicates a very successful but unusual infection characteristic and distribution of shrew HBV in its hosts,” said Prof. Glebe.

“Since the virus is unable to infect human liver cells, an infection of humans with these viruses can very probably be ruled out. A danger for the general population in contact with HBV-infected shrews is therefore not to be assumed.” Shrews are protected species and are an important part of the ecosystem. In earlier work, this team of scientists was able to show that mammals other than humans carry their own HBV species and that some of these animal viruses can even infect human cells.

The second peculiarity of the newly discovered virus is that it does not use the liver bile acid transporter known so far from human and monkey HBV to infect its target cells, but instead takes a completely unknown path into the cell. “We still do not know all HBV receptor molecules,” said Prof. Drexler. “Third, our evolutionary biological investigations show that hepatitis B viruses have existed in mammals for millions of years, probably for 80 million years.”

The scientists now hope to further investigate the unusual infection behaviour of this shrew-HBV, which does not require the presence of the key immunomodulator HBeAg. Despite enormous international efforts, no effective therapy for the cure of chronic hepatitis B has yet been developed. One of the reasons for this is that there are no simple animal models that can be used to investigate the complex interactions of the viral infection with the host's immune system. “The HBVs of shrews that have now been discovered are bringing a suitable model for the investigation of HBV infection within reach,” said Prof. Glebe.

The work of the JLU teams of Prof. Glebe and Prof. Geyer was mainly carried out within the framework of the Collaborative Research Centre SFB 1021, which is funded by the German Research Foundation (DFG). The JLU, the Charité, the University of Bonn, the University Hospital Freiburg, the Bernhard-Nocht-Institute for Tropical Medicine in Hamburg, the Friedrich-Loeffler-Institute in Greifswald/Riems as well as universities and institutes in Sierra Leone, Nigeria, the Ivory Coast, Latvia and Russia participated in the study.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dieter Glebe
National Reference Centre for Hepatitis B and D Viruses
Institute of Medical Virology
Justus Liebig University Giessen
Schubertstr. 81
35392 Giessen

Phone: +49 641 99-41246

Prof. Dr. Jan Felix Drexler
Charité – Universitätsmedizin Berlin
Institute of Virology
Charitéplatz 1
10117 Berlin

Phone: +49 30 450 625461


Rasche et al.: Highly diversified shrew hepatitis B viruses corroborate ancient origins and divergent infection patterns of mammalian hepadnaviruses
DOI: 10.1073/pnas.1908072116

Weitere Informationen:

Caroline Link | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: HBV Virology hepatitis B hepatitis B virus immune immune system mammalian viral protein viruses

More articles from Life Sciences:

nachricht Detect cell changes faster
27.02.2020 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Preserved and fresh – Neutrons show details of the freeze drying process
27.02.2020 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

Latest News

Explained: Why water droplets 'bounce off the walls'

27.02.2020 | Physics and Astronomy

Existing drugs may offer a first-line treatment for coronavirus outbreak

27.02.2020 | Health and Medicine

Rare lizard fossil preserved in amber

27.02.2020 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>