Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Untangling Whole Genomes of Individual Species From a Microbial Mix

27.05.2014

New method opens window on invisible world

A new approach to studying microbes in the wild will allow scientists to sequence the genomes of individual species from complex mixtures. It marks a big advance for understanding the enormous diversity of microbial communities —including the human microbiome. The work is described in an article published May 22 in Early Online form in the journal G3: Genes|Genomes|Genetics, published by the Genetics Society of America.


Joshua N. Burton, University of Washington

Hi-C data can cluster contigs from a metagenome assembly into species. Each of the 12 species with a substantial presence in the draft assembly is represented by a cluster. Each contig is shown as a dot, with size indicating contig length, colored by species. Edge widths represent the densities of Hi-C links between the contigs shown. Only 2400 contigs are shown: the 200 largest contigs that map uniquely to each species.

“This new method will allow us to discover many currently unknown microbial species that can’t be grown in the lab, while simultaneously assembling their genome sequences,” says co-author Maitreya Dunham, a biologist at the University of Washington’s Department of Genome Sciences.

Microbial communities, whether sampled from the ocean floor or a human mouth, are made up of many different species living together. Standard methods for sequencing these communities combine the information from all the different types of microbes in the sample. The result is a hodgepodge of genes that is challenging to analyze, and unknown species in the sample are difficult to discover.

... more about:
»GSA »Genetics »NIH »analyze »inside »microbes »microbial »sequence

“Our approach tells us which sequence fragments in a mixed sample came from the same genome, allowing us to construct whole genome sequences for individual species in the mix,” says co-author Jay Shendure, also of the University of Washington’s Department of Genome Sciences.

The key advance was to combine standard approaches with a method that maps out which fragments of sequence were once near each other inside a cell. The cells in the sample are first treated with a chemical that links together DNA strands that are in close proximity. Only strands that are inside the same cell will be close enough to link. The DNA is then chopped into bits, and the linked portions are isolated and sequenced.

“This elegant method enables the study of microbes in the environment,” says Brenda Andrews, editor-in-chief of the journal G3: Genes|Genomes|Genetics. Andrews is also Director of the Donnelly Centre and the Charles H. Best Chair of Medical Research at the University of Toronto. “It will open many windows into an otherwise invisible world.”

At a time when personal microbiome sequencing is becoming extremely popular, this method breaks important ground in helping researchers to build a complete picture of the genomic content of complex mixtures of microorganisms. This complete picture will be crucial for understanding the impact of varying microbiome populations and the relevance of particular microorganisms for individual health.

CITATION: Species-Level Deconvolution of Metagenome Assemblies with Hi-C-Based Contact Probability Maps Joshua N. Burton, Ivan Liachko, Maitreya J. Dunham, and Jay Shendure. G3: Genes|Genomes|Genetics g3.114.011825; Early Online May 22, 2014, doi:10.1534/g3.114.011825; PMID 24855317.

FUNDING INFORMATION: This work was supported by NIH/NHGRI grant T32HG000035 (J.N.B.), NIH/NHGRI grant HG006283 (J.S.), NIH/NIGMS grant P41 GM103533 (I.L. & M.J.D.), NSF grant 1243710 (I.L. & M.J.D.), DOE/-LBL-JGI grant 7074345/DE-AC02-05CH11231 (J.S.). M.J.D. is a Rita Allen Foundation Scholar and a Fellow in the Genetic Networks program at the Canadian Institute for Advanced Research.

####

ABOUT G3: G3:Genes|Genomes|Genetics publishes high-quality, valuable findings, regardless of perceived impact. G3 publishes research that generates useful genetic and genomic information such as genome maps, single gene studies, QTL studies, mutant screens and advances in methods and technology, novel mutant collections, genome-wide association studies (GWAS) including gene expression, SNP and CNV studies; exome sequences related to a specific disease, personal exome and genome sequencing case, disease and population reports, and more.

Conceived by the Genetics Society of America, with its first issue published June 2011, G3 is fully open access. G3 uses a Creative Commons license that allows the most free use of the data, which anyone can download, analyze, mine and reuse, provided that the authors of the article receive credit. GSA believes that rapid dissemination of useful data is the necessary foundation for analysis that leads to mechanistic insights. It is our hope is that this strategy will spawn new discovery.

ABOUT GSA: Founded in 1931, the Genetics Society of America (GSA) is the professional scientific society for genetics researchers and educators. The Society’s more than 5,000 members worldwide work to deepen our understanding of the living world by advancing the field of genetics, from the molecular to the population level. GSA promotes research and fosters communication through a number of GSA-sponsored conferences including regular meetings that focus on particular model organisms. GSA publishes two peer-reviewed, peer-edited scholarly journals: GENETICS, which has published high quality original research across the breadth of the field since 1916, and G3:Genes|Genomes|Genetics, an open-access journal launched in 2011 to disseminate high quality foundational research in genetics and genomics. The Society also has a deep commitment to education and fostering the next generation of scholars in the field. For more information about GSA, please visit www.genetics-gsa.org. Follow GSA on Facebook at facebook.com/GeneticsGSA and on Twitter @GeneticsGSA.

Cristy Gelling | newswise

Further reports about: GSA Genetics NIH analyze inside microbes microbial sequence

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>