Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unravelling the genetics of fungal fratricide

16.10.2018

Selfish genes are genes that are passed on to the next generation but confer no advantage on the individual as a whole, and may sometimes be harmful. Researchers at Uppsala University have, for the first time, sequenced (or charted) two selfish genes in the fungus Neurospora intermedia that cause fungal spores to kill their siblings. Unexpectedly, the genes were not related to each other, perhaps indicating that selfish genes are more common than previously thought.

One mainstay of evolutionary theory is survival of the fittest individuals, whose genes can thereby be passed on. However, one type of gene - 'selfish' genes - can be passed on without benefiting the individual.


Researchers at Uppsala University have sequenced (or charted) two selfish genes in the fungus Neurospora intermedia that cause fungal spores to kill their siblings.

Credit: Raquel Pereira

Usage Restrictions: May only be published in connection to reports about the research by Svedberg et al.

Biologists believe that selfish genes may be important drivers of evolution, and it is therefore essential to understand how selfish genes function in order to understand more general evolutionary patterns.

One example of a selfish gene, known as the 'spore killer', has been found in certain fungi. If a fungal spore carries this gene, the spore kills all related ('sibling') spores that lack the gene. The spore-killing gene will thus be passed on, despite being detrimental to the fungus as a whole.

Similar genes for killing siblings have been found in other organisms, such as fruit flies and mice, but in those species it is a matter of sperm that destroy sibling sperm. Selfish genes may also serve as pesticides: inserting selfish genes into malaria-bearing mosquitoes can cause individuals of one sex only to be born, thereby reducing their population size. However, knowledge of how selfish genes function genetically, and of how they spread in nature, is still limited.

For the first time, a research group at Uppsala University's Department of Systematic Biology has succeeded in sequencing complete genomes that contain complex selfish genes. The researchers sequenced genomes from two different types of spore killer found in the ascomycete fungus Neurospora intermedia. The results have now been published in Nature Communications.

"Sequencing selfish genes of this type is difficult, since they are often located on parts of the chromosome that have accumulated a huge amount of mutations, and where pieces of the chromosome have been rearranged," says Hanna Johannesson, who headed the study.

Sequencing of the genome showed that the spore-killing genes exist in chromosome regions where much of the chromosome has changed direction: forming so called 'inversions'.

These chromosome regions have also collected numerous new mutations and regions where repetitive DNA has expanded. The mutations may mean that individuals with spore-killing genes are more poorly adapted, and they may be an explanation of why these spore-killing genes are unusual in Neurospora intermedia.

"One result that surprised us was that the two spore killers were not related to each other, and use different genes to kill sibling spores. This may suggest that selfish genes in general, and spore-killing genes in particular, are more common than people used to think," says Jesper Svedberg, the main author of the study.

Media Contact

Jesper Svedberg
Jesper.Svedberg@ebc.uu.se
46-706-990-945

 @UU_University

http://www.uu.se 

Jesper Svedberg | EurekAlert!
Further information:
http://www.uu.se/en/news-media/press-releases/press-release/?id=4480&area=3,8&typ=pm&lang=en
http://dx.doi.org/10.1038/s41467-018-06562-x

Further reports about: Sequencing chromosome regions fungal fungus genes genes function genomes spores

More articles from Life Sciences:

nachricht Channels for the Supply of Energy
19.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Vine Compound Starves Cancer Cells
19.11.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How Humans and Machines Navigate Complex Situations

19.11.2018 | Science Education

Finding plastic litter from afar

19.11.2018 | Ecology, The Environment and Conservation

Channels for the Supply of Energy

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>